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Abstract: Existing research methods for recognizing EEG (Electroencephalogram) signals 

in motor imagery (MI) often overlook the dynamic changes of brain networks over time, 

resulting in insufficient classification accuracy for MI tasks. This article addresses the 

recognition problem of dynamic changes in brain networks during MI tasks and applies an 

EEG signal classification method based on multi-layer time-varying functional brain 

networks. This article uses the BCI (Brain-Computer Interface) Competition IV 2a dataset 

to preprocess the raw EEG signals through bandpass filtering and CSP (Common Spatial 

Pattern) algorithm. The EEG signals of the MI task are divided into 7 1-second time 

windows with a step size of 0.5 seconds. Within each time window, Pearson correlation 

coefficients between EEG channels can be calculated to generate corresponding brain 

networks, and multiple time-varying functional brain networks can be constructed by 

stacking the brain networks from multiple time windows. The network topology features, 

node degree, clustering coefficient, network efficiency, and multi-layer network features of 

each window can be extracted, including Multiplex Clustering Coefficient (MCC), 

Multiplex Participation Coefficient (MPC), and inter layer correlation coefficient. By 

dividing the dataset through 10 fold cross validation, the random forest algorithm can be 

used to classify and recognize four types of motion imagination tasks. The experimental 

results show that the average recognition rate of the article’s method in four types of MI 

tasks reached 89.19%. This method can improve the classification accuracy of MI tasks 

and enhance a comprehensive understanding of the dynamic changes in brain networks 

during the process of MI. 

1. Introduction 

Understanding the dynamic characteristics of brain networks is crucial for grasping temporal 

changes in brain function. However, current research often overlooks the time-varying nature of 

EEG signals during MI, limiting insights into brain network dynamics [1-2]. This gap is particularly 

significant in multi-class MI tasks [3-4], where capturing these temporal dynamics is key to 

enhancing classification accuracy. 
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This study innovatively divides EEG signals during the process of MI into multiple time 

windows. By setting the window length to 1 second and the step size to 0.5 seconds, 7 consecutive 

time windows are obtained in each MI paradigm. This segmentation method enables the capture of 

the time-varying characteristics of EEG signals and the generation of multiple brain networks 

through Pearson correlation coefficients, thereby constructing multi-layer time-varying functional 

brain networks. In this process, by comparing the brain network topologies of different windows, 

the window brain network with the most obvious differences is selected as the core brain network, 

and the rationality of the core brain network is further verified by extracting core brain network 

features and interlayer brain network features. MCC and MPC were extracted in the study to 

describe the dynamic changes and separation integration features of brain networks. After 

combining these features with the core brain network features, a multi-layer time-varying functional 

brain network feature vector is formed, and precise classification of four types of MI tasks is 

achieved through the random forest algorithm. The BCI Competition IV 2a dataset used in this 

article consists of 22 EEG channels and data from 9 participants. These subjects were required to 

perform four different MI tasks of left hand, right hand, feet, and tongue during the experiment. 

Through the analysis method of multi-layer time-varying functional brain networks, this article not 

only understands the dynamic changes of brain networks in the process of MI at a more detailed 

spatiotemporal scale, but also provides new ideas and technical support for future classification 

methods of MI EEG signals. 

2. Related Works 

The MI task has received widespread attention in the field of brain computer interfaces, as it 

does not rely on external stimuli and can be non invasively recorded through EEG signals, making 

it one of the core tasks in brain computer interface research. A large amount of research aims to 

improve the classification accuracy of MI tasks and explore their potential clinical application value. 

Significant progress has been made in the accuracy of motion imagery classification [5] by 

introducing advanced feature extraction methods and machine learning algorithms. Common 

methods include time-frequency analysis, co spatial patterns [6], and multivariate autoregressive 

models, which can effectively extract EEG features related to MI and improve classification 

performance. In recent years, the application of deep learning techniques, such as convolutional 

neural networks and recurrent neural networks, has further promoted the research on MI EEG signal 

classification [7-8], and some studies have achieved satisfactory classification accuracy. However, 

although these methods perform well on specific tasks and individuals, they still face problems such 

as insufficient cross individual generalization ability and complex feature extraction processes. 

Traditional classification methods for MI tasks are mostly based on the activity of local brain 

regions, such as signals from the motor cortex. More and more studies have shown that MI tasks [9] 

not only involve the activity of local brain regions, but also rely on the synergistic effects between 

different brain regions and complex connections across the entire brain. Relying solely on local 

brain region features for classification cannot fully capture the whole brain dynamic activity during 

MI, thereby limiting further improvement in classification accuracy. Although previous studies have 

attempted to incorporate whole brain EEG signals into classification models, the accuracy of MI 

classification still needs to be further improved due to the difficulty in comprehensively analyzing 

connections and interactions across the entire brain. 

The study of functional brain networks provides a new perspective for understanding brain 

function, especially in the application of MI tasks, which has attracted widespread attention. The 

functional brain network [10] quantifies the functional connections between different brain regions, 

revealing the coordinated activity patterns of the brain under different cognitive tasks. In the study 
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of MI tasks, functional brain network features [11] have been widely applied in the analysis and 

classification of EEG signals. The functional connectivity patterns of different brain regions during 

MI can reflect neural mechanisms related to specific movements. Classification methods based on 

such functional connectivity features, such as synchronicity analysis, phase synchronicity, and 

graph theory-based network feature extraction methods, have been proven to effectively improve 

classification performance. Although functional brain network features have shown significant 

advantages in classifying MI tasks, current research mostly focuses on static functional brain 

network analysis, ignoring the dynamic changes of brain networks over time. In the process of MI 

[12], the functional connectivity patterns of the brain are dynamically changing, and the separation 

and integration processes between different brain regions are crucial for task completion. The static 

functional brain network features cannot fully reflect the complex neural mechanisms involved in 

MI, leading to insufficient understanding of the dynamic changes in the brain network. The existing 

functional brain network feature extraction methods mainly focus on local network features, node 

degrees, clustering coefficients, etc., but fail to effectively describe the overall dynamic changes of 

the brain network and separate and integrate features, which to some extent limits the improvement 

of classification performance in MI tasks. There is an urgent need for an analysis method that can 

describe the dynamic changes and separation integration features of brain networks for the study of 

MI tasks, in order to further improve the accuracy and stability of classification. 

3. Methods 

3.1 Dataset Selection and Preprocessing 

This article uses the BCI Competition IV 2a dataset [13-14], which includes 9 participants. Each 

participant is required to complete four different MI tasks during the experiment, including left 

hand (category 1), right hand (category 2), feet (category 3), and tongue (category 4) MI. These 

tasks aim to activate activity in different regions of the brain, generating EEG signals related to 

specific MI.  

Open eyes for two minutes: The subjects are asked to open their eyes and gaze at the gaze cross 

on the screen, during which potential EEG artifacts caused by eye orientation are mainly recorded. 

Close the eyes for one minute: The subjects are asked to close their eyes and record the changes 

in eye tracking artifacts caused by closing their eyes. The EEG signals in the open eye state are 

compared to identify and reduce the impact of eye tracking artifacts. 

Eye Movement for One Minute: Participants are required to perform specific eye movements, 

such as moving their eyes left, right, up, and down, and record the artifact signals caused by these 

movements to provide reference for subsequent data preprocessing. 

The structure of the dataset is shown in Figure 1. 

BCI Competition IV 2a

Subject 1

Subject 2

Subject 3

...

Subject 9

Session 1

Session 2

Run 1

Run 2

Run 3

Run 4

Run 5

EOG 3

EOG 2

EOG 1

Class 1

Class 2

Run 3

Class 4

Run 6  

Figure 1: Dataset Structure 
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Each session consists of 6 sets of tests, each set containing 48 exercise imagination tasks. The 

paradigm of MI is shown in Figure 2. 

t (s)0 1 2 3 4 5 6 7 8

Cue

Motor imagery Break

Beep

Fixation cross

 

Figure 2: Paradigm of MI 

In each test, participants face a computer screen. At the beginning of the test (t=0s), a fixed cross 

can appear on the black screen accompanied by a brief sound prompt. After two seconds (t=2s), an 

arrow pointing to left, right, down, and up (corresponding to left hand movement, right hand 

movement, foot movement, and tongue movement, respectively) can appear on the screen for 

approximately 1.25 seconds. It can prompt participants to imagine the corresponding motion to the 

image, and each participant needs to complete this imagination task until the cross on the screen 

disappears (t=6s). After each trial, participants have a 2-second rest period during which there are 

no specific task requirements. The time for exercise imagination is 2s-6s, a total of 4 seconds. 

Data preprocessing is crucial in the analysis of MI EEG signals to improve signal quality and the 

effectiveness of subsequent feature extraction. Bandpass filtering can be applied to the original EEG 

signal, selecting a frequency range of 8-30Hz. This frequency band contains μ rhythms and β 

rhythms highly correlated with MI tasks, effectively removing low-frequency noise and 

high-frequency artifacts from EEG signals. The CSP algorithm is used for spatial filtering to 

maximize the variance between two motor imagery tasks. It enhances task-related features while 

suppressing background noise and artifacts unrelated to the task. 

3.2 Time Window Division and Brain Network Construction 

In a 4-second MI task, the EEG signals are segmented into 1-second time windows with a 

0.5-second step, resulting in 0.5-second overlaps between adjacent windows. This produces 7 

consecutive windows: [2,3], [2.5,3.5], [3,4], [3.5,4.5], [4,5], [4.5,5.5], and [5,6] seconds. Each time 

window can cover EEG signals at different time points during the process of MI, capturing subtle 

changes in EEG signals over time. 

By dividing the time window, high temporal resolution data is provided throughout the entire 

time range of the MI task, and multiple time windows are analyzed to capture changes in brain 

functional connectivity patterns during the process of MI. Corresponding brain networks can be 

constructed based on functional connections between EEG channels within each time window. The 

nodes of a functional brain network represent EEG channels, while the edges between nodes 

represent functional connections between EEG channels. Functional connectivity can be quantified 

by calculating Pearson correlation coefficients between EEG channels. 

For two EEG channels i and j within a given time window, the Pearson correlation coefficient is 

expressed as: 

𝑟𝑖𝑗 =
∑ (𝑋𝑖(𝑡)−𝑋𝑖)(𝑋𝑗(𝑡)−𝑋𝑗)

𝑁

𝑡=1

√∑ (𝑋𝑖(𝑡)−𝑋𝑖)
2

𝑁

𝑡=1
√∑ (𝑋𝑗(𝑡)−𝑋𝑗)

2
𝑁

𝑡=1

                        (1) 

𝑋𝑖 and 𝑋𝑗 are the mean values of the corresponding channel signals, and N represents the 
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number of sampling points within the time window. 

3.3 Construction and Feature Extraction of Multi-layer Time Varying Functional Brain 

Networks 

The research framework of multi-layer time-varying functional brain networks is shown in 

Figure 3. 
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Figure 3: Research framework of multi-layer time-varying functional brain network 

Multiple brain networks within continuous time windows divided in MI tasks can be stacked 

together to construct a multi-layer time-varying functional brain network. Each layer corresponds to 

a time window, and the connections between layers reflect the changes in functional connections 

between different time points, capturing the dynamic changes of EEG signals over time. Traditional 

network features like node degree and clustering coefficient describe brain network structure at each 

time point. For the multi-layer time-varying network, features such as MCC, MPC, and inter-layer 

correlation capture dynamic changes. The most distinctive window network is selected as the core, 

and its features are combined with those from the multi-layer network to create a comprehensive 

feature vector. This vector is used with a random forest algorithm and 10-fold cross-validation to 

accurately classify motor imagery tasks. 

For node i in an undirected graph, the formula for node degree 𝑘𝑖 is: 

𝑘𝑖 =∑ 𝐴𝑖𝑗
𝑗∈𝑉

                                (2) 

𝐴𝑖𝑗 is the element of the adjacency matrix, and V is the set of all nodes. 

The formula for clustering coefficient is: 

𝐶𝑖 =
2𝑇𝑖

𝑘𝑖(𝑘𝑖−1)
                                 (3) 

The global network efficiency E is calculated by taking the average of the reciprocal of the 

shortest path lengths between all node pairs 
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𝐸 =
1

𝑁(𝑁−1)
∑

1

𝑑𝑖𝑗
𝑖≠𝑗

                            (4) 

The formula for the MCC of node i is: 

𝐶𝑖,1 =

∑ ∑ ∑ 𝑎𝑖𝑗𝑎𝑗𝑚𝑎𝑚𝑖
𝑖≠𝑗,𝑚≠𝑖

𝑘≠𝜇
𝜇

(𝑀−1)∑ 𝑘𝑖
𝜇
(𝑘𝑖
𝜇
−1)

𝜇

                    (5) 

The average MCC of all nodes is represented as: 

𝑀𝐶𝐶 =
1

𝑁
∑ 𝐶𝑖,1
𝑁
𝑖                              (6) 

The formula for MPC of node i is: 

𝑝𝑖 =
𝑀

𝑀−1
[1 −∑ (

𝑀

𝐿=1

𝑘𝑖
𝐿

𝑜𝑖
)2]                          (7) 

The formula for the average MPC is: 

𝑀𝑃𝐶 =
1

𝑁
∑ 𝑝𝑖
𝑁
𝑖                                (8) 

The cross layer correlation coefficient is used to measure the correlation of node degrees 

between different layers, and it can reveal the structural similarity between different layers. CP 

(Conditional Probability) reveals the impact of node degrees in one layer on the corresponding node 

degree distribution in another layer. The formula is: 

𝐶𝑃 =∑ 𝑎𝑖𝑗
𝛼𝑎𝑖𝑗

𝛽
/∑ 𝑎𝑖𝑗

𝛽

𝑖𝑗
𝑖𝑗

                           (9) 

𝑎𝛽 represents the adjacency matrix within 𝛽. 

The random forest algorithm can be used to classify the extracted multi-layer time-varying 

functional brain network features. Random forest constructs multiple decision trees and takes their 

majority voting results. In the classification of four types of MI tasks, the model outputs four 

classification results, effectively distinguishing the MI of the left hand, right hand, tongue, and leg. 

To ensure the robustness of the model, 10 fold cross validation can be used to divide the dataset into 

training and testing sets. The training set is used for training the random forest model, ensuring that 

the model can fully learn the features of the motion imagination task. After the model training is 

completed, its performance can be evaluated on the test set, and the classification results can be 

quantified using metrics such as accuracy. To verify the effectiveness and superiority of the 

proposed method, the results were compared with benchmark methods to evaluate its performance 

in different tasks. The efficiency and accuracy of the random forest algorithm in classifying motion 

imagery tasks can be ensured through a systematic model training and evaluation process. 

4. Results and Discussion 

4.1 Network Topology and Network Feature Analysis Results 

The network topology structure is shown in Figure 4. 

In MI tasks, the connectivity density of brain network nodes shows significant dynamic changes 

at different time windows. In the left hand movement imagination, the network node connections of 
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W1-W3 windows are relatively dense, indicating strong functional connections in the brain at this 

time. In the W4 window, the connections of network nodes become relatively sparse, and then in the 

W5-W7 window, the network density increases again, showing a re-enhancement of connections. 

This density change reflects the specific processing of the brain during left-handed MI. In 

right-handed MI, the network nodes in the W4 window are most densely connected, indicating a 

significant increase in functional connectivity of the brain in processing right-handed MI tasks at 

this time. In the imagination of foot movement, the network node connections of W1, W2, and W6 

windows are relatively dense, while the connections of W3, W4, W5, and W7 windows are 

relatively sparse. This indicates that the brain has different functional connection patterns when 

processing foot movement imagination, which may be related to the complexity of motion control. 

For tongue movement imagination, the network density within the W1-W3 window gradually 

becomes sparse from initially dense, but from W4 onwards, the network density increases 

significantly, indicating dynamic changes in functional connectivity of the brain in processing 

tongue movement imagination tasks. Therefore, the W4 window exhibits unique network topology 

changes in four types of motion imagination tasks, at a critical moment of interlayer changes, 

indicating that the W4 window may be a key time point for functional network reorganization and 

optimization in different motion imagination tasks. 

Left hand

Right hand

Feet

Tongue

 

Figure 4: Network topology structure 

The average feature parameter results of single-layer and multi-layer networks under W4 

window are shown in Figure 5. 

 
Figure 5A Single layer network features    Figure 5B Multi-layer network features 

Figure 5: Single layer and multi-layer network feature parameter results under W4 window 
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Each feature parameter has a certain degree of discrimination. Among the single-layer network 

features, the node degree of the right-handed motion imagination task is the highest, at 9.1, 

indicating that the network connections under this task are the most dense; The node degree of the 

bipedal task is the lowest, at 7.8, reflecting relatively few functional connections. In terms of 

clustering coefficient, the coefficient of the two foot task is the highest, at 0.55, indicating stronger 

local connectivity between nodes, while the clustering coefficient of the right-hand task is the 

lowest, at 0.48, showing weaker local clustering effect. In terms of network efficiency, the 

right-handed task once again showed an advantage with an efficiency value of 0.78, indicating fast 

information transmission speed and excellent network performance; The efficiency of the bipedal 

task is the lowest, at 0.72, indicating that the network's ability to transmit global information is 

relatively weak. In the characteristics of multi-layer networks, right-handed tasks exhibit the highest 

values in MCC, MPC, and inter layer correlation coefficients, with values of 0.85, 0.81, and 0.78, 

respectively, demonstrating significant advantages in multi-layer networks. This indicates that they 

have the highest connectivity and participation within multiple time windows, and have good 

stability in functional connections across layers. The MCC and MPC of the tongue task are 

relatively low, at 0.62 and 0.66, respectively, indicating weak clustering effects and node 

participation in multi-layer networks. However, the inter layer correlation coefficient is 0.77, 

indicating that its cross layer connections have a certain degree of stability. There are significant 

differences in the distribution of single-layer and multi-layer network feature parameters between 

various types of motor imagination tasks under the W4 window, especially the advantage of 

right-handed motor imagination tasks in multi-layer network features is more prominent. The 

functional connectivity features of W4 window in different tasks have obvious task dependencies 

and can distinguish various types of MI tasks. 

4.2 Recognition Results of Four Types of MI Tasks 

The comparison of the recognition results of motion imagination tasks for core network features, 

multi-layer network features, and network features combining the two is shown in Table 1. 

Table 1: Recognition results of different features 

Category 
Core network 

characteristics (%) 

multi-layer network 

features (%) 

Combination 

features (%) 

Left hand 83.12±0.89 87.77±0.78 89.12±0.88 

Right hand 82.89±0.92 87.12±0.91 89.14±0.44 

Feet 83.99±0.89 86.98±0.83 89.29±0.76 

Tongue 82.56±0.56 87.56±0.94 89.22±1.21 

When using core network features alone for recognition, the recognition accuracy of various 

tasks is relatively low, but it still has certain discriminative ability. The recognition rate of the foot 

movement imagination task is the highest, at 83.99 ± 0.89%. The use of multi-layer network 

features significantly improves recognition, achieving over 86% accuracy. The left-hand motor 

imagery task shows the highest accuracy at 87.77±0.78%. When core and multi-layer network 

features are combined, accuracy further improves to nearly 89%, with the foot task reaching 

89.29±0.76% and the tongue task at 89.22±1.21%. This combination captures dynamic brain 

network changes more comprehensively, enhancing classification performance in motor imagery 

tasks. 

4.3 Comparison of Average Recognition Rates of Different Feature Extraction Methods 

The comparison results of the average recognition rates of different feature extraction methods 
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are shown in Table 2. 

Table 2: Average recognition rates of different feature extraction methods 

Method 
Left 

hand (%) 

Right hand 

(%) 

Feet 

(%) 

Tongue 

(%) 

Average 

(%) 

The method in this article 89.12 89.14 89.29 89.22 89.19  

Double complex wavelet transform 

[15] 
88.06 89.11 88.02 87.89 88.27 

Multi⁃model fuses temporal⁃spatial 

features [16] 
89.21 89.07 88.78 89.06 89.03 

Transformer for spatio-temporal 

feature learning [17] 
84.56 84.32 83.82 83.94 84.16 

The proposed method achieves the highest recognition rates across all motor imagery tasks, with 

89.12% for the left hand, 89.14% for the right hand, 89.29% for the foot, and 89.22% for the tongue, 

averaging 89.19%, as shown in Table 2. This indicates that the method proposed in this article can 

more effectively capture the dynamic changes and spatiotemporal features of brain networks when 

extracting features for motion imagination tasks. In contrast, the average recognition rate of the dual 

complex wavelet transform method is 88.27%, which is close to but still lower than the method 

proposed in this article, indicating a slight deficiency in capturing features. The average recognition 

rate of the multi-model fusion spatiotemporal feature method is 89.03%, which is close to but 

slightly inferior to the method proposed in this article. The Transformer-based spatiotemporal 

feature learning method has the lowest recognition rate among all tasks, with an average recognition 

rate of only 84.16%, indicating that it may have limitations in complex spatiotemporal feature 

extraction. 

5. Conclusions 

This article proposes a motion imagination task recognition method that combines core network 

features and multi-layer network features by constructing a multi-layer time-varying functional 

brain network. Experimental results show that this method has better recognition rates than existing 

feature extraction methods in four types of motion imagination tasks, especially in capturing the 

dynamic changes of brain networks and separating and integrating features. This study not only 

provides new ideas for the classification of MI tasks in the field of brain computer interfaces, but 

also promotes a deeper understanding of the dynamic characteristics of brain networks, which has 

important practical application value. However, this study still faces certain challenges in practical 

applications, including the diversity of datasets and the computational complexity of algorithms. In 

addition, due to the limited spatial resolution of current methods, more subtle spatiotemporal 

features of brain networks have not been fully revealed. In future research, the article can further 

explore how to combine more dimensions of brain signal data to improve the generalization ability 

and recognition accuracy of the model. At the same time, the article can develop more personalized 

and robust methods for recognizing MI based on the characteristics of different individuals' brain 

networks, ultimately achieving a more efficient brain computer interface system. 
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