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Abstract: Due to the varying conventions for determining the sign of bending moments 

across different mechanics courses, particularly in elasticity mechanics where there are no 

clear guidelines, beginners often find themselves confused during the learning process. 

This inconsistency not only increases the difficulty of learning but also leads to confusion 

when students study across multiple disciplines. This paper analyzes and summarizes the 

sign conventions of various mechanical quantities and their interrelationships in different 

mechanics courses. By comparing the sign conventions of bending moments in these 

courses, this paper proposes a unified method for sign determination applicable to all of 

them and further validates the method's reasonableness and applicability through specific 

examples. Although researchers in recent years have proposed different methods for 

determining bending moments within specific disciplines, no one has yet introduced a 

theory that unifies the sign determination of bending moments across theoretical mechanics, 

structural mechanics, material mechanics, and elasticity mechanics. The findings of this 

research provide valuable insights for the teaching of mechanics courses. 

1. Introduction 

For students in engineering disciplines such as civil engineering, hydraulic engineering, and 

mechanical engineering, it is generally required to systematically study courses such as theoretical 

mechanics, mechanics of materials, structural mechanics, and elasticity. From the perspective of 

knowledge structure, these courses are both interconnected and possess independent theoretical 

systems. This results in both similarities and differences in the notation used for mechanical 

quantities across these courses, which can easily lead to confusion and difficulties for beginners 

during problem-solving. In response to this situation, many educators have conducted research and 

analysis [1-3]. 

In these research findings, scholars have put forward various arguments regarding the issues 

related to the notation of mechanical quantities in each course. However, most of these discussions 

are limited to the specific applications within each course, without addressing the differences in the 

criteria for determining the sign of the bending moment across different courses, nor have they 

systematically examined the issue of unification. As a result, students inevitably encounter 

confusion and misunderstandings during their studies, which hinders a deeper understanding and 
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application of mechanical concepts. 

Furthermore, in elasticity, there is no explicit method provided for determining the sign of the 

bending moment, which leaves beginners even more perplexed.  

In light of this, this paper systematically analyzes the conventions for determining the sign of the 

bending moment in courses such as theoretical mechanics, mechanics of materials, structural 

mechanics, and elasticity. It explores the distinct characteristics of each course and their 

interrelations. Based on this analysis, the paper proposes a new unified method for determining the 

sign of the bending moment, based on the principles of stress sign determination. This method not 

only standardizes the criteria for bending moment sign determination across different mechanical 

disciplines but also helps students reduce confusion during interdisciplinary study and application, 

thereby improving learning efficiency and depth of understanding. The unified method for bending 

moment sign determination aims to provide new insights and approaches for the teaching and 

learning of mechanics courses, contributing to the advancement of engineering education. 

2. Notation Conventions for Mechanical Quantities in Mechanics Courses 

2.1. Notation Conventions for Mechanical Quantities in Theoretical Mechanics 

Theoretical mechanics, as a fundamental course in engineering mechanics, deals with the laws of 

motion and the analysis of forces acting on objects. Its primary focus is on particles, rigid bodies, 

and systems of particles, studying the equilibrium and motion of objects under the influence of 

force systems without considering internal forces and deformations. The mechanical quantities 

involved include force, bending moment, and couple, all of which are vector quantities. The number 

of mechanical quantities is relatively limited, and the notation conventions are relatively 

straightforward [4]. 

In theoretical mechanics, when determining the sign of a force, the first step in problem-solving 

is to establish a coordinate system. The direction of the force's projection along the positive axis of 

the coordinate system is considered the positive direction of the force. Stress and strain are key 

parameters in studying the deformation and strength of objects. Stress is typically denoted by σ, and 

unless otherwise specified, it is generally assumed that tensile stress is positive and compressive 

stress is negative. This convention is consistent with those in mechanics of materials and structural 

mechanics, aiding students in connecting and understanding concepts across different courses. 

In planar problems, moments and couples are defined as scalar quantities. Typically, 

counterclockwise moments are considered positive, while clockwise moments are considered 

negative [5]. This convention simplifies the calculation of moments in planar problems and 

provides students with a consistent standard for solving moment equilibrium problems. 

2.2. Notation Conventions for Mechanical Quantities in Structural Mechanics 

Structural mechanics primarily focuses on the study of bar systems, such as trusses and frames. 

The goal is to analyze the forces and deformations within these bar systems to ensure the safety and 

reliability of structures. The key mechanical quantities involved in this analysis include axial force, 

shear force, and bending moment. The notation conventions for these mechanical quantities play a 

crucial role in structural mechanics, as they directly impact the accuracy of calculations and the 

rigor of the analytical process. 

The notation conventions for axial force, shear force, and the bending moment in horizontal 

members in structural mechanics are consistent with those in mechanics of materials. Specifically, 

axial force is considered positive for tension and negative for compression. Shear force is defined as 

positive when it causes a clockwise rotation around the isolated section, and negative when it causes 
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a counterclockwise rotation. For horizontal members, the bending moment is positive when the 

upper part of the member is in compression and the lower part is in tension, and negative in the 

opposite case. 

In structural mechanics, the analysis of bending moments in frames is relatively complex. 

Typically, the analysis begins by assuming the sign of the bending moment, which is then verified 

through the calculation results. For instance, if a bending moment is initially assumed to be positive 

and the calculated result is also positive, this indicates that the assumption is correct and the 

bending moment is indeed positive. Conversely, if the calculated result is negative, it means that the 

bending moment is opposite to the initial assumption and thus negative. This method not only 

facilitates understanding and memorization but also enhances the accuracy of the analysis. 

2.3. Notation Conventions for Mechanical Quantities in Mechanics of Materials 

Mechanics of materials, as a crucial component of engineering mechanics, primarily investigates 

the relationships between forces and deformations in individual members. By analyzing the 

relationships between internal forces and deformations, it determines the sign conventions for 

relevant mechanical quantities. The notation conventions in mechanics of materials are essential for 

accurate analysis of internal forces, stresses, and deformations, which is critical for engineering 

design and analysis. The key mechanical quantities involved include normal stress, shear stress, 

axial force, shear force, and bending moment [6]. 

In mechanics of materials, internal forces are no longer treated as vectors and do not require 

vector notation; they are considered scalar quantities and can be either positive or negative. 

Normal Stress and Axial Force: Normal stress is the perpendicular force acting on the 

cross-section of a material, typically denoted by σ. In mechanics of materials, normal stress is 

defined as positive if it acts away from the cross-section (tensile stress) and negative if it acts 

toward the cross-section (compressive stress). Similarly, axial force that causes longitudinal 

elongation of a member is positive, while axial force that causes shortening is negative. Therefore, 

the sign conventions for normal stress and axial force can be summarized as follows: tension is 

positive, and compression is negative. These conventions not only help standardize internal force 

analysis but also assist students in accurately determining and calculating the forces and 

deformations in practical problems. 

Shear Stress and Shear Force: Shear stress acts parallel to the cross-section of a material and is 

typically denoted by τ. In mechanics of materials, the sign convention for shear stress is as follows: 

shear stress that causes a clockwise moment on a point inside the cross-section (near the section) is 

considered positive, and shear stress causing a counterclockwise moment is considered negative. 

This convention is the same as that for shear force, where a shear force that causes a clockwise 

rotation of the isolated section is positive, and a shear force that causes a counterclockwise rotation 

is negative. This approach helps simplify the analysis process and ensures consistency in the sign 

determination for shear force and shear stress. For example, when analyzing the shear force 

distribution in a cantilever beam, this convention allows for an intuitive understanding of the 

positive and negative shear force distribution. 

Bending Moment: As illustrated in Figure 1, if the effect of the bending moment causes 

compression in the upper part of the beam segment and tension in the lower part (i.e., if the beam 

bends downward), the bending moment is considered positive; conversely, if it causes tension in the 

upper part and compression in the lower part, the bending moment is negative. This analysis reveals 

that there are differences in the sign conventions for moments in theoretical mechanics and bending 

moments in mechanics of materials. These differences arise primarily due to the distinct focus and 

analytical methods of the two courses: theoretical mechanics emphasizes the equilibrium and 
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motion of particles and rigid bodies, while mechanics of materials focuses more on internal stresses 

and strains and the deformation behavior of components. To reduce confusion in interdisciplinary 

learning, it is important to highlight these differences in teaching and to seek a unified method for 

sign conventions. 

 

Figure 1: Symbol for moment M in material mechanics 

2.4. Notation Conventions for Mechanical Quantities in Elasticity 

Stress: In elasticity, the definition of stress signs must consider the orientation of the surface on 

which the stress acts, which is a notable distinction from other mechanics courses. If the outward 

normal of a cross-section is aligned with the positive direction of the coordinate axis, the 

cross-section is termed a positive face. On a positive face, stress is considered positive if it acts in 

the direction of the coordinate axis and negative if it acts in the opposite direction. Conversely, if 

the outward normal of a cross-section is aligned with the negative direction of the coordinate axis, 

the cross-section is termed a negative face. On a negative face, stress is considered positive if it acts 

in the negative direction of the coordinate axis and negative if it acts in the positive direction. This 

convention can be simplified to: positive normal direction and negative face direction are positive, 

while negative normal direction and positive face direction are negative. In summary, stresses are 

positive if they act in the same direction as the normal vector and negative if they act in the opposite 

direction. 

As shown in Figure 2(a), for the normal stress σ acting on a loaded member, in mechanics of 

materials, compressive normal stress is considered negative, whereas in elasticity, normal stress on 

the negative face is considered negative. For the normal stress σ' on the same member, tensile 

normal stress is considered positive in mechanics of materials, and in elasticity, normal stress on the 

positive face is considered positive. It has been found that the conventions for normal stress in 

elasticity are consistent with those in other mechanics courses, but the conventions for shear stress 

differ. 

As shown in Figure 2(b), in mechanics of materials, shear stress that causes a clockwise rotation 

around an isolated section is considered positive, meaning that τ and τ' have opposite signs. In 

elasticity, the direction of the outward normal of the cross-section is taken as the positive direction 

of the first coordinate axis in the local coordinate system. The right-hand rule is used to determine 

the positive direction of the other two coordinate axes. Shear stress that is consistent with the 

positive direction of this local coordinate axis is defined as positive. 

 
(a) Schematic diagram of axial force component 
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(b) Schematic diagram of shear stress 

Figure 2: Schematic diagram of stress 

Based on the above analysis, it is evident that the method for determining stress in elasticity is 

more general and that the conventions regarding positive and negative faces are applicable across 

other courses as well. Therefore, we can build on this more consistent stress determination method 

to explore and develop a unified approach for determining the sign of the bending moment in 

elasticity, which would also be applicable to other related courses. This method should be easy to 

understand and apply. 

Bending Moment: As previously mentioned, the sign conventions for bending moments differ 

across various disciplines. For example, in theoretical mechanics, the sign of a bending moment is 

determined based on the direction of the force and its point of application. In mechanics of 

materials, the sign is based on the effect of the force on the deformation of the member. However, in 

elasticity, there is no explicit method provided for determining the sign of the bending moment. 

This lack of uniformity highlights the need for systematic research and the establishment of a 

unified method for determining the sign of the bending moment. 

3. A Unified Method for Determining the Sign of Bending Moments in Mechanics Courses 

3.1. Current Research Status 

In recent years, researchers have proposed various methods for determining the sign of bending 

moments specific to individual disciplines. For example, Zhang Aijun et al. [7] suggested 

categorizing the determination of the sign of moments into two types: one caused by stress and the 

other by external force, and assessing them separately. Liu Xiaomei et al. [8] explained the 

determination of the sign of forces and moments in engineering mechanics by projecting these 

vectors onto axes, integrating principles from theoretical mechanics and mechanics of materials. 

Liao Shukuan [9] studied the determination of the sign of bending moments in beams undergoing 

planar bending deformation in architectural mechanics. Jiang Ke [10] proposed a method in 

engineering mechanics teaching that involves initially assuming the unknown bending moment to 

be positive, followed by verification through subsequent calculations. 

In summary, although there have been numerous studies on methods for determining the sign of 

bending moments within specific disciplines, these methods are mostly confined to individual fields 

and have not achieved cross-disciplinary unification. The methods for determining the sign of 

bending moments in courses such as theoretical mechanics, structural mechanics, mechanics of 

materials, and elasticity differ from each other, leading to confusion and misunderstandings among 

students when they study across these courses. Currently, no researcher has proposed a theory that 

unifies the methods for determining the sign of bending moments across these mechanic courses. 
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This situation indicates the need for a systematic analysis of the sign conventions for bending 

moments across different mechanics courses, to explore their commonalities and differences, and 

ultimately to propose a unified method. Such a method could not only help students reduce 

confusion and enhance their learning efficiency and comprehension but also provide new insights 

and approaches for the teaching of mechanics courses. 

3.2. A Unified Method for Determining the Sign of Bending Moments 

Inspired by the consistent sign conventions for normal stress across the various disciplines, this 

paper proposes a method for determining the sign of bending moments: In a coordinate system that 

follows the right-hand rule, let the axis perpendicular to the paper plane be the z-axis. If the z-axis 

points into the paper, then a bending moment M on the front face that rotates counterclockwise 

around the z-axis, and on the back face that rotates clockwise around the z-axis, is considered 

positive. Conversely, if the bending moment M on the front face rotates clockwise around the z-axis, 

and on the back face rotates counterclockwise around the z-axis, it is considered negative. If the 

z-axis points out of the paper, the sign convention is reversed. 

This method differs from the sign determination methods in theoretical mechanics and 

mechanics of materials by introducing a third coordinate axis, adding another dimension to the 

analysis. It proposes a unified method based on the consistent sign convention for normal stress on 

the front face and can also be applied to determine the sign of bending moments in elasticity. A 

simple example is provided below. 

As shown in Figure 3, first establish a coordinate system that adheres to the right-hand rule, with 

the z-axis pointing out of the paper. If the bending moment M on the front face rotates 

counterclockwise around the z-axis, and on the back face rotates clockwise around the z-axis, then 

the bending moment M is negative in this case.  

 

Figure 3: Unified judgment of positive and negative bending moment symbols 

Example 1: Referring to Figure 2-9 on page 23 of the textbook Concise Course on Elasticity 

(Third Edition) by Xu Zhizhi [11], as shown in Figure 4 of this paper, by applying Saint-Venant's 

principle, the integral conditions obtained on the small boundary are: 

/2

/2
( )

h

x x l
h

ydy M 


                                (1) 

Next, let's proceed with determining the sign of M using the previously mentioned method: with 

the z-axis pointing into the paper, if the moment M on the positive face rotates counterclockwise 

around the z-axis, then the moment M is positive. This result aligns with the findings in the 

textbook. 
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Figure 4: Force distribution on the left and right ends of the beam 

Example 2: Referring to Figure 3-4 on page 51 of the textbook Elasticity by Guowei Wo and 

Yuanchun Wang (Shanghai Jiao Tong University Press) [12], as shown in Figure 5, the component 

bends under the action of moments applied at both ends. By applying Saint-Venant's principle, the 

resultant moment of the normal stress 𝜎𝑥 on the left and right boundary surfaces must equal the 

couple moment M of the surface forces, that is: 

/2

0,
/2

( )
h

x x l
h

ydy M 


                                (2) 

Next, let's determine the sign of M using the method described in this paper: with the z-axis 

pointing into the paper, if the moment M on the positive face rotates counterclockwise around the 

z-axis, then the moment M is positive. The result is consistent with the textbook. These two 

examples demonstrate the correctness of the method proposed in this paper. 

 

Figure 5: Moment of M beam on the unit width of the couple 

Further analysis of Figure 5 reveals that if the coordinate system is established as shown, then 

according to the principles of mechanics of materials, the moment M causes the beam to bend with 

the top concave and the bottom convex, which is considered a positive moment. From the 

perspective of elasticity theory, this moment is also positive. Therefore, this method demonstrates a 

certain consistency with the approach used in mechanics of materials when applied within a specific 

coordinate system. 

4. Conclusion 

This paper systematically studies the methods for determining the signs of various mechanical 

quantities in theoretical mechanics, mechanics of materials, structural mechanics, and elasticity 

theory. It analyzes the similarities and differences in sign determination methods across these 

disciplines, comparing and contrasting them. The study finds that the method used in elasticity 

theory for determining stress signs is more comprehensive and consistent with the sign conventions 

of normal stress in other mechanics courses. Based on this, the paper proposes a method for 

determining the sign of moments in elasticity theory: In a coordinate system that follows the 
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right-hand rule, with the z-axis perpendicular to the plane of the paper, if the z-axis points into the 

paper, a moment M on the positive face rotating counterclockwise around the z-axis is considered 

positive, while a moment M on the negative face rotating clockwise around the z-axis is also 

positive. Conversely, if the moment on the positive face rotates clockwise and on the negative face 

rotates counterclockwise, both are considered negative. If the z-axis points out of the paper, the 

signs are reversed. 

This method has been shown to be applicable to theoretical mechanics, structural mechanics, and 

mechanics of materials as well. 
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