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Abstract: With the rapid development of tunnel construction, the safety and stability of its 

structure have become one of the key points that people pay attention to when traveling. 

The current tunnel detection methods have low efficiency and insufficient accuracy, due to 

the lack of proficiency in the application of technical means. Ground penetrating radar 

technology has become an important tool in the field of tunnel detection due to its 

advantages such as high resolution, high efficiency, and non-contact. It belongs to 

non-destructive testing technology and plays a pivotal role in tunnel inspection. Therefore, 

in this paper, waveform identification of tunnels has been carried out using geo-radar 

technique. This paper applies the experimental method, data comparison, using gradient 

optimization, the loss values obtained from the training of U-Net and ResGradNet are 

demonstrated, and the experimental results show that the minimum root-mean-square error 

value is the maximum of 0.0006, and the minimum is close to 0.0001.  

1. Introduction 

As underground transportation facilities, tunnels have complex structures and are affected by 

underground water, geological stress and other factors for a long time, which make them prone to 

safety hazards such as cracks, cavities and leakage. If these hidden dangers are not found and dealt 

with in time, they will have a serious impact on the operational safety of tunnels. Therefore, regular 

inspection of tunnel structures to detect and deal with potential safety hazards in a timely manner is 

a necessary means to ensure the safe operation of tunnels. The basic principle of geo-radar is to 

utilize the propagation characteristics of high-frequency electromagnetic waves in underground 

media for detection. When the electromagnetic wave encounters different media, the phenomena of 

reflection, refraction and scattering will occur. By receiving and analyzing these reflected 
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electromagnetic wave signals, the morphology and characteristics of underground structures are 

accurately depicted.  

Geo-radar has a resolution of centimetres in tunnel detection and is able to accurately identify 

minute cracks and voids in tunnel walls. It is also non-contact, non-destructive, fast and efficient, 

enabling real-time inspection without affecting normal tunnel operations. With the continuous 

development of computer technology and artificial intelligence technology, the data processing and 

analyzing ability of geological radar has been significantly improved. In the construction process, 

complex geological conditions and high construction difficulty can easily cause construction quality 

problems. Geo-radar technology scans, monitors and evaluates the tunnel lining and other 

structures.  

This paper firstly describes the problems and reasons that tunnels are prone to, suggests that they 

should be inspected regularly, and introduces the advantages of geo-radar in tunnel inspection. 

Secondly, this paper discusses the related theories of geo-radar, waveform analysis and tunnel 

detection. In the method part, this paper firstly explains the technology and principle of geo-radar, 

then analyzes the method of tunnel detection, and then mentions the waveform analysis. In the 

experimental results part, this paper analyzes the experimental parameters and experimental 

methods, and analyzes the results. In the conclusion part, this paper summarizes the whole paper 

and puts forward the points that can be improved.  

2. Related Work 

During the development of geo-radar technology, many scholars and experts have conducted 

in-depth research and exploration on its basic principles and applications. 

In order to automatically analyze the ground-penetrating radar data to detect defects and 

anomalies in the tunnel lining, Jian Huang utilized an improved self-monitoring learning technique 

to improve the accuracy and efficiency of tunnel lining detection using ground-penetrating radar [1]. 

Mahmut Nedim Alpdemir and Mehmet Sezgin combined a hybrid approach of reinforcement 

learning with ground-penetrating radar to improve the detection of buried objects, optimizing the 

decision-making process for identifying and locating subsurface objects [2]. Krishnendu Raha and 

K.P. Ray used a prototype to develop and validate a geo-radar model focusing on 

ground-penetrating radar models for practical implementation and testing [3]. Generative 

adversarial nets improve the detection process using iteration, and Pang jo Chun, M. Suzuki, and Y. 

Kato proposed to apply it to identify underground pipelines to enhance the detection of buried 

pipelines from ground-probing images, which was beneficial for infrastructure maintenance and 

urban planning [4]. Xin Wang discussed the application of georadar images for nondestructive 

testing of coal-rock interfaces in mining environments [5]. Wei Yao presented ground collapse 

prediction based on ground-penetrating radar and deep learning techniques, a deep learning model 

designed to analyze ground-penetrating radar signals to predict the likelihood of ground collapse 

[6]. 

The dataset GROUNDED is designed to facilitate the improvement of ground-penetrating radar 

performance under challenging environmental conditions, and was used by Teddy Ort to assess the 

ability of ground-penetrating radar to localize under severe weather conditions [7]. Ejup Hoxha et al. 

discussed the integration of robot systems with impact echo and ground penetrating radar 

technologies [8]. A micro aircraft equipped with ground penetrating radar can use the radar's 

navigation and positioning from an aerial perspective. Rik Bähnemann et al. believe that this is a 

new method for detecting landmines and humanitarian demining work [9]. A mechanical learning 

scheme for estimating the diameter of steel bars in concrete structures using ground penetrating data, 

and Iraklis Giannakis et al. intended to non-destructive evaluate the details of steel bars in concrete 
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structures [10]. The focus of ground penetrating radar in characterizing the internal structure of 

landmines is on developing technology, and Federico Lombardi distinguished landmines from other 

buried objects based on their internal characteristics [11].  

For tunnel detection, there are also many theoretical achievements. For example, Alexander 

Weinrauch's variational method for surface handling and tunnel detection is a computational 

geometry problem related to computer graphics and topology [12]. Sim Kuan Goh used Gaussian 

process models to explain and predict unstable conditions in tunnels, and tracked and detected them 

in tunnel environments [13]. Min Xue applied intelligent fault detection to tunnel diode circuits in a 

fuzzy Markov jump system based on long short-term memory networks, which had high 

effectiveness in identifying and diagnosing complex system faults [14]. Naotake Ishikura explored 

tunnel detection by utilizing cached attributes to perceive features, secret data transmission, and 

exploration [15].  

Some people have also studied waveform analysis. Among them, Yujiao Wu modeled a speaker 

recognition system with global information from the original audio waveform [16]. Based on the 

low signal-to-noise ratio of denoised cyclic autocorrelation transform, Zeliang An constructed a 

multimodal model for waveform recognition and used denoised cyclic autocorrelation transform to 

enhance the recognition of multi carrier waveforms [17]. Chunjun Zheng studied a dual channel 

model for speech emotion recognition, which improved the accuracy of emotion detection in speech 

by directly analyzing waveform data. This is valuable for the application of human-computer 

interaction and emotion analysis [18]. Thien Huynh used time-frequency analysis based on constant 

wavelets and deep convolutional networks for accurate low intercept probability radar waveform 

recognition [19]. Thien Huynh's research focused on waveform recognition of intelligent radar 

systems based on precise deep convolutional neural networks, which improved system performance 

by accurately identifying and classifying radar waveforms [20]. In order to improve the accuracy 

and efficiency of waveform recognition in radar systems, Weijian Si stated that dense convolutional 

neural network algorithms can accurately identify radar waveforms. He continuously optimized and 

improved the detection methods and algorithms of ground penetrating radar through extensive 

experiments and data analysis [21]. This paper uses geological radar technology to analyze the 

waveform of tunnels in depth, with technical and demand support. 

3. Methods 

3.1 Geo-Radar Technology 

Geo-radar utilizes high-frequency electromagnetic wave technology to detect the distribution and 

nature of underground objects. The transmitter transmits pulsed electromagnetic signals with an 

intermediate frequency of 12.5m to 1200m and a pulse width of 0.1ns. The target to be measured is 

determined from the signal reflected on an oscilloscope. The simple principle of geo-radar detection 

is shown in Figure 1. 

Surface, geological radar antenna, emitted and reflected electromagnetic waves and underground 

targets are important components. Firstly, the transmitting antenna discovers abnormal bodies in the 

tunnel geology, performs lining, receives antennas, configures controllers, graphic displays, and 

magnetic recording devices to detect medium structures, buried objects, etc. The geographic radar 

detection system mainly consists of a transmitter and a receiver. The transmitter is responsible for 

transmitting high-frequency electromagnetic wave pulses, and the receiver is responsible for 

receiving reflected, broken and transmitted electromagnetic waves and converting them into 

electrical signals for processing. Its detection ability is superior to ordinary electromagnetic wave 

detection instruments, and it can distinguish between short wave and long wave, and is suitable for 

shallow wave and deep wave detection.  
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Figure 1: Simple principle of geo-radar detection. 

The radar detection system consists mainly of a data acquisition computer, a main radar, a 

transmitting/receiving antenna, a fiber-optic survey and a tripod equipped with telemetry equipment. 

Manual transportation is required because of the high friction between the borehole and the antenna. 

In practical engineering, the depths of the two boreholes often do not coincide, because the 

transmitting antenna can be placed in the flatter borehole, while the receiving antenna can be placed 

in the deeper borehole for detection, so that the electromagnetic waves can cover as long a range as 

possible. During capture, the transmitter antenna is fixed in one position and the receiver antenna is 

scanned in another borehole for detection; the transmitter antenna is then moved to the next position 

and the receiver antenna is scanned again; the above steps are repeated until the transmitter antenna 

covers the entire borehole.  

The amplitude attenuation is mainly affected by the conductivity of the medium and the 

propagation time is mainly affected by the dielectric constant of the medium. Therefore, the 

distribution of conductivity and dielectric constant of the subsurface medium can be obtained by 

completely inverting the waveforms of the amplitude and time information of the direct wave. The 

reflected signals of electromagnetic waves from different media interfaces contain information 

about the propagation time of electromagnetic waves in both directions from emission to reflection 

and reception. When they encounter a media interface, cracks that are initially undetectable can also 

be detected due to changes in reflection geometry compared to single-aperture reflectometer 

methods. For reflected signals, a reverse time offset can be used to map the media interface.  

3.2 Tunnel Inspection 

This paper argues that tunnel testing is mainly to detect the tunnel cross-section size, clearance 

width, height, tunnel lining thickness whether to meet the design standards, to prevent the lining 

strength reduction due to insufficient thickness. Using rebound method, core method for lining 

concrete strength testing, to ensure that the concrete strength meets the requirements. Using radar 

scanning technology, the distribution of reinforcement and the thickness of the protective layer are 

tested to measure the durability of the lining structure. In addition, we test the performance of 

waterproofing materials such as tunnel flashing and waterstop. We can also detect environmental 

factors such as harmful gases, humidity and temperature in tunnels, and assess the structural 

stability of tunnels through numerical simulation and monitoring methods to prevent structural 

instability due to changes in geological conditions and loading effects.  

Currently, the commonly used inspection methods include ruler measurement, observation, 

ultrasonic wave, X-ray, radar scanning, numerical simulation and so on. Tunnel is a relatively 
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closed space with certain safety risks. Regular tunnel inspection can detect potential safety hazards 

inside tunnels in time to ensure the safety of personnel and vehicles. It serves as an engineering 

structure that requires frequent testing for structural integrity and stability. Geological deformation, 

water infiltration, earthquakes and other factors may affect the structure of the tunnel, which, if not 

detected and repaired in a timely manner, may lead to structural damage or collapse of the tunnel, 

threatening the safety of people's lives and property. Therefore, the environmental pollution of 

tunnels should be monitored and corresponding measures should be taken to reduce the adverse 

impact on the surrounding environment. 

Geo-radar uses high-frequency electromagnetic waves for tunnel anomaly detection, the 

amplitude of the reflected wave reflects its characteristic changes, and the position is calculated 

based on the travel time: 
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Where g is the burial depth, s is the travel time, and A is the send/receive distance. The relative 

differences in physical properties in common geologies are shown in Table 1: 

Table 1: Physical data for common geologies 

 Relative 

permittivity 

Velocity of electromagnetic 

wave 

Attenuation 

Air 1 0.3 0 

Water 78.5 0.023 0.1 

Limestone 6-8 0.11 0.5 

Silty sand 4-28 0.06 20 

Granite 5-7 0.12 0.03 

Concrete 4-16 0.12 / 

Metal 1-10 0.02 100000000 

Radar wave reflection is enhanced if the difference in dielectric constants becomes large:  
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The tunnel inspection process must be integrated with the inspection content and processed with 

an antenna of appropriate frequency. When implementing the data acquisition process in the field, 

parameter acquisition modes, time windows, gain methods and sizes, and filtering need to be 

determined. Parameters are calibrated for wave speed prior to actual data acquisition and proper 

calibration and distance measurement work is performed during distance acquisition. 

3.3 Waveform Recognition 

The waveform recognition algorithm is based on the principles of signal processing and pattern 

recognition, and realizes the non-contact detection of the internal structure of the tunnel through 

feature extraction, classification and recognition of the waveform signals collected by the geo-radar. 

Common waveform recognition techniques include frequency domain analysis based on Fourier 
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transform, time-frequency analysis based on wavelet transform, and pattern recognition based on 

machine learning. Fourier transform converts the signal from the time domain to the frequency 

domain, and then analyzes the characteristics of different frequency components in the signal. The 

wavelet transform analyzes the time-frequency characteristics of signals at different scales. In 

tunnel detection, it can identify changes in the formation structure and the location of anomalies 

more finely.  

The optimization of waveform recognition technology is mainly reflected in the two aspects of 

algorithm improvement and data processing. On the one hand, the generalization ability and 

robustness of the model are improved through continuous optimization of the algorithm structure, 

so that it can adapt to the waveform recognition tasks in different tunnel environments. The model 

structure combining convolutional neural network and recurrent neural network is adopted to realize 

the effective extraction and classification of reflected waveforms inside the tunnel. On the other 

hand, the improvement of data processing technology has also greatly enhanced the accuracy of 

waveform recognition. By preprocessing, denoising and enhancing the acquired radar data, the 

effects of environmental noise and interference signals are eliminated and the signal quality is 

improved. Meanwhile, wavelet transform and spectrum analysis are used to further extract the key 

feature information in the waveform. The full-waveform inversion method is improved by using 

alternating iterations for the simultaneous inversion of dielectric constant and conductivity, and the 

dielectric constant is updated as follows:  

 Su                                (4) 

Updating the conductivity as follows: 

 Su                                (5) 

The initial model uses the results of the full waveform inversion in the Laplace domain and 

imposes inequality constraints based on the parameter vectors during the inversion process.  

4. Results and Discussion 

4.1 Tunnel Waveform Identification 

Gradient-optimized datasets were randomly generated with 2, 3, and 4 layers of wave velocity 

models and error models, 1000 wave velocity models per layer. Each model undergoes ten rounds 

of inversion iterations for both virtual and real detectors and stores the inversion gradients, 

generating a total of 10,000 gradient optimization datasets (real detector gradients, virtual detector 

gradients). A gradient optimized dataset was created by randomly selecting 1% of the data as a 

validation set and 1% as a test set to achieve full waveform inversion for deep learning. The 

parameters of the full waveform version have a great influence on the inversion results, and in order 

to obtain better target gradients optimized for the full waveform version, this paper describes the 

experience of the full waveform version optimized for the inversion parameters. The experiments 

compare the effect of different sampling times on the inversion power of the whole waveform 

according to the arrangement of the virtual detector observation method. 1000 inversions are 

performed at Reke wavelet frequencies of 40Hz, 80Hz, 120Hz, 160Hz and 200Hz and the best 

optimization function is selected. 

4.2 Gradient Optimization Network Comparison Experiment  

In the experiments, both U-Net and ResGradNet were trained using Adam Optimizer with a 
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learning rate of 0.0001, starting at every 200 steps and decreasing exponentially until it reaches 0. 

Considering the cost and efficiency of the network training, the experiments defined the amount of 

training data used for each network parameter update as batch size = 30, and the rounds of network 

parameter iterations as 500. 

4.3 Analysis of Results 

A grid of wave speed values was created using rand to simulate the output of the full waveform 

inversion, and then the isosurface function was used to plot an isosurface of the wave speed data 

that represents a constant wave speed value in three dimensions, as shown in Figure 2. The Lights 

and Illumination function is used to add illumination effects to the 3D plot to enhance the 

visualization. 

 

Figure 2: 3D view of wave speed values from full waveform inversion results 

 

Figure 3: Comparison of network loss functions 
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As shown in Figure 3, U-Net and ResGradNet are used to train the dataset. The total number of 

iteration rounds is 500, and comparing and analyzing the training prediction results from the loss 

function point of view, it can be seen that both of the proposed networks can converge effectively 

and guarantee a certain accuracy. Compared with ResGradNet, the U-Net network performs poorly 

in terms of convergence speed, prediction accuracy, etc., which indicates that there is a certain 

shortcoming in the performance of the U-Net network. 

5. Conclusion 

In recent years, with the rapid development of artificial intelligence and machine learning 

technology, the waveform recognition algorithm has been greatly optimized and improved. 

Intelligent waveform recognition technology realizes automatic analysis and processing of 

geological radar data by introducing advanced algorithms such as deep learning and machine 

learning. This paper takes geo-radar technology as the starting point, analyzes the principle of radar 

detection, and applies this to tunnel detection. Subsequently, this paper discusses the waveform 

recognition method, through the tunnel waveform recognition, gradient optimization network 

comparison experiments, and get the corresponding data results. In a critical area of the tunnel, the 

geo-radar waveform recognition technology showed a clear signal of reflected wave. After further 

data processing and analysis, we successfully extracted the amplitude, frequency and phase of the 

reflected wave using advanced waveform recognition algorithms, identifying safety hazards such as 

voids, cracks and loose bodies inside the tunnel. Radar waves are affected by multiple reflections 

and scattering during propagation, resulting in complex and variable received waveform signals. 

Most waveform recognition algorithms are based on statistical learning and pattern recognition 

methods, which are often difficult to achieve the desired results when dealing with complex and 

variable tunnel environments. Therefore, this paper will develop more advanced waveform 

recognition algorithms and models for tunnel environments. 
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