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Abstract: As a key technology of robot navigation, path planning has garnered widespread 
attention and has been utilized in various applications such as mobile robots, unmanned 
aerial vehicles, and human-computer interaction. Recently, several studies advocate 
constructing semantic maps for path planning in the laboratory stage. However, these 
approaches require large storage space and high computing resource consumption, making 
it difficult to meet real-time requirements. We tackle this issue by building real-time 
semantic navigation map and propose a real-time path planning algorithm based on fast 
target detection. Specially, we first construct two-dimensional grid map using the 
Gamapping method and locate the target objection utilizing the object detection algorithm 
YOLOv3 retrained in an indoor experimental environment. Furthermore, by incorporating 
the category information and position information of the detected object into the two-
dimensional grid map through a coordinate mapping mechanism, we combine the geometric 
metric information and visual detection information to build semantic navigation map for 
automatically planning a reasonable path.  The experiments conducted on both qualitative 
and quantitative levels have demonstrated that our method achieves superior performance 
and practical application value.  

1. Introduction 

In recent years, Simultaneous Localization and Mapping (SLAM) technology has seen rapid 
pprogress, and has been successfully implemented in various fields such as mobile robots, unmanned 
aerial vehicles (UAVs) and driverless car. However, although traditional SLAM technology can 
effectively identify the geometric structure of the surrounding environment, it often ignores the 
understanding of semantic information. Due to the widespride application of deep learning, deep 
neural networks have made significant progress in object detection, semantic segmentation and other 
fields. As a result, some researchers are attempting to apply visual object detection algorithms and 
image semantic segmentation algorithms based on deep learning technology to SLAM research, thus 
ushering in a new era of semantic SLAM research. 

For a semantic SLAM task, the construction of a semantic map is considered to be the most 
important and challenging step. Kuipers et al. [1] first proposed the concept of semantic map, 
emphasizin the importance of modeling external spatial knowledge, but their work was not yet 
practically implemented at that time. To address this issue, several recent studies [2-5] construct 
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semantic maps using monocular visual SLAM, two-dimensional laser sensors, global conditional 
random fields, and semantic acquisition framework. Although these methods have made some 
progress, the construction of semantic maps is still in the laboratory stage and experiments are 
conducted in simulation environment. In contrast, there have been relatively few studies on 
constructing semantic maps in real-world environments. Furthermore, while visual SLAM 
technology can fully characterize the complex three-dimensional environment, the 3D map requires 
a significant amount of storage space and has poor robustness., Additionally, it has high hardware 
requirementsand cannot meet the real-time requirements. Therefore, under the existing technology 
and hardware conditions,  

Therefore, we focus on the development of a method for constructing a real-time two-dimensional 
semantic map using two-dimensional laser sensors and visual sensors. To meet the practical 
requirements of autonomous navigation and human-computer interaction of mobile robots, we 
propose a two-dimensional semantic navigation map construction method based on fast object 
detection for real-time path planning. This method is designed. Firstly, based on the self-built mobile 
robot platform, the 2D raster map is drawn by Gamapping algorithm. Then, the retrained object 
detection algorithm YOLOv3 is eemployed to detect the target in real time. The category and position 
information of the target object is mapped to two-dimensional raster map by coordinate mapping. 
Finally, the interior 2D semantic map is constructed by combining geometric measurement 
information with visual detection information.  

2. Proposed Method 

The workflow of semantic navigation map construction based on fast object detection is shown in 
Figure 1. Firstly, based on two-dimensional laser sensor and odometer data, we use Gmapping 
algorithm to achieve incremental accurate raster mapping. Then, color images and depth images are 
collected in real time based on RGB-D cameras. The YOLOv3 algorithm is retrained for common 
indoor objects to realize real-time target detection of the images. Finally, the location information and 
category information of the detected object are transformed to the two-dimensional raster map to 
complete the construction of semantic map. Additionally, the proposed method can be divided into 
four parts: wheel odometer motion model, 2D laser sensor model, 2D raster map construction, object 
detection and coordinate mapping. 
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Figure 1: Overall workflow of the proposed method 

2.1 Wheel odometer motion model 

The wheel odometer relies on the pulse variation output by photoelectric encoder in a certaintime 
to calculate the moving distance and rotation angle of the wheel, so as to estimate the relative variation 
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of the mobile robot's pose. Suppose the resolution of photoelectric encoder is P , the deceleration 
ratio of reducer is η , the diameter of robot wheel is D , and the axle length of vehicle is W , then the 
displacement increment of the wheel within a unit time can be calculated as 
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where δ is the distance that wheel rotates within a unit time, and N is the number of pulses output 
by the wheel within a unit time. Assume that the increment of the left and right encoders within a 
sampling interval is n∆ , m∆  respectively, the displacement variation of left and right wheels can be 
obtained as  
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Within a sampling interval, the displacement increment of mobile robot can be expressed as the 
average displacement increment of the left and right wheels, and its angle increment can be further 
calculated as  
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where D∆ and θ∆ respectively represent the displacement increment and angle increment of robot 
within a sampling interval. Let the pose of robot at the -tht  time be [ ]Tt t tx , y ,θ , the pose of robot 
at ( 1)-tht +  time can be calculated as 
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2.2 Two-dimensional laser sensor model 

Two-dimensional laser sensors work by transmitting a beam of light and receiving a beam reflected 
back by an obstacle, and use the time of beam travels to calculate the distance of the obstacle. In this 
paper, the used dimensional laser sensor has two main functions: Firstly, the real-time observation 
information with the environment map is matched and combined with the odometer data to complete 
the robot pose estimation; Secondly, after the precise positioning of the robot, the map is 
incrementally constructed from the two-dimensional laser sensor data at the current moment. 

In order to realize the real-time positioning of robot, it is usually necessary to convert the laser 
coordinates to the world coordinates, that is, to establish a two-dimensional laser sensor observation 
model. The distance between the measuring point and the laser transmitting point tz , and the angle 

tε  between the measuring point and the horizontal coordinate of the two-dimensional laser sensor 
can be obtained by using the two-dimensional laser sensor. As shown in Figure 2, if the posture of 
robot at the moment is [ ]Tt t tx , y ,θ , then we obtain their world coordinate as 
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where T[ , ]
t tz zx y  represents the coordinates of the laser measuring point in the world coordinate, 

T[ , ]x yξ ξ represents the measurement noise, and generally follows the Gaussian distribution of zero 
mean. 

wO wX

wY

θ

tθ
tz

rY

Laser measuring point

 

Figure 2: Schematic diagram of coordinate transformation that measures points of two-dimensional 
laser sensor. 

2.3 Two-dimensional raster map construction 

In this paper, the two-dimensional laser map is constructed using Gmapping algorithm. The core 
of Gmapping algorithm is particle filter algorithm, which can be divided into two parts: robot pose 
estimation by particle filter and global map update by Kalman filter. Gmapping algorithm takes 
odometer information as input and data of two-dimensional laser sensor as observation values. Its 
combined posterior probability density distribution is shown as 

( ) ( ) ( )1: 1: 1: 1 1: 1: 1: 1: 1: 1, , , ,t t t t t t t tp x m z u p m x z p x z u− −=                 (6) 

where [ ]1: 1 2=t tx x ,x , ,x represents the robot pose sequence within the moment t , 

[ ]1 1 2 2, , , , , t tm x y x y x y=  represents the location of environmental features, [ ]1: 1 2=t tz z ,z , ,z

represents the observation sequence of two-dimensional laser sensor within the moment t , and 
[ ]1: 1 1 2 1=t tu u ,u , ,u− − represents the odometer measurement value within the moment 1t − . 

The method based on particle filtering randomly distributes several particles in the map, and each 
particle represents a possible motion trajectory [6]. In the process of robot driving, the particle set is 
iteratively converging, in which the particles with high weight are retained, while the particles with 
low weight are abandoned, so as to ensure that the optimal particle set consistent with the robot 
trajectory is retained eventually. Based on particle filtering algorithm, Gmapping algorithm 
simultaneously takes the odometer motion model and the real-time observation information of two-
dimensional laser sensor as the proposed distribution [7], so that the sampling is distributed in the 
likelihood function region of the observation model to the maximum extent, which increases the 
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probability of obtaining the optimal particle and realizes the construction of a more accurate map. 
The sampling proposal distribution is shown as 
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The corresponding probability ( )1: 1: 1: 1, ,t t tp x m z u −  can be obtained by combining the position 

sequence 1:tx  and the observation information 1:tz  of two-dimensional laser sensor, so that the local 
map observed in real time can be continuously fused into global map, and the global map can be 
updated until the construction of global map is realized. 

2.4 Object detection and coordinate mapping 

YOLOv3 is one of the best algorithms in the field of target detection at present, which can achieve 
good results in terms of detection speed and accuracy [8]. Therefore, this paper adopts the YOLOv3 
algorithm trained for specific indoor objects to carry out target detection. In addition, the algorithm 
has good robustness for detecting objects or small objects that are very close to the camera in the 
image, which is very advantageous for mobile robots traveling at a relatively low speed. 

After the completion of the two-dimensional raster map and object detection, the position 
information and category information of objects detected by the object detection algorithm need to 
be further mapped to the two-dimensional raster map, that is, the position information of objects in 
the camera coordinate system is mapped to the two-dimensional raster map coordinate system. In 
general, the robot coordinate system and the camera coordinate system have the following 
transformation relationship. 
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Where[ ], ,r r rx y z ,[ ], ,c c cx y z  are the coordinates of three-dimensional space points in the robot 

coordinate system and the camera coordinate system respectively. crR , crT are the rotation matrix 
and translation vector between the robot coordinate system and the camera coordinate system 
respectively. α  are the tilt Angle of the camera. [ ], ,x y z∆ ∆ ∆  are the projected distance between 
the origin of the two coordinate systems on the three coordinate axes. They all depend on the 
installation positions of the camera and the laser sensor. 

Similarly, the robot coordinate system has the following transformation relation with the world 
coordinate system. 
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where[ ], ,w w wx y z ,[ ], ,r r rx y z  are the coordinates of three-dimensional space points in the world 

coordinate system and the robot coordinate system respectively; wrR , wrT  are the rotation matrix and 
translation vector between the world coordinate system and the robot coordinate system respectively; 
β is the angles between the two coordinate systems; [ ]T, ,0x y′ ′∆ ∆ are the corresponding coordinate 
axis distance between the origin of the two coordinate systems. 

According to the resolution of the constructed raster map, the coordinates under the world 
coordinate system can be converted into discrete raster coordinates as  
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Where ,g gx y   and[ ],w wx y  respectively represent raster coordinates and world coordinates, and 
resolution represents the resolution of the constructed raster map. 

In order to highlight the objects contained in the map, the generated semantic navigation map 
containing object annotation information is further optimized. For a two-dimensional raster map, the 
obstacles where the marked points are detected are marked uniformly to form a closed pattern, and 
different kinds of objects are represented by different colors, thus completing the construction of a 
semantic navigation map. 

3. Experimental results and analysis 

In this paper, the computer used for deep neural network training and testing of target detection is 
cpu i9 processor, main frequency 3.7GHz, memory 64GB, NVIDIA GTX 1080Ti graphics card, and 
Ubuntu 14.04 system. 

In order to avoid interference caused by detection of unnecessary objects, 20 types of common 
objects in indoor scenes were selected based on COCO data set and PASCAL VOC data set [9], and 
a total of 6000 images were collected for training. Before training, pre-selected training sets are 
uniformly made into VOC format xml files and converted into YOLO format txt files. In the training, 
the original image was randomly clipping, mirroring, translation, stretching, rotation and other data 
augmentation processing. 

Figure 3 shows the effect diagram of target detection in the actual experimental environment by 
using the YOLOv3 network. In order to quantitatively highlight the advantages of this algorithm in 
target detection accuracy and detection speed, it was quantitatively compared with YOLOv2 and 
Faster RCNN algorithms, and the experimental results were shown in Table 1. 
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Figure 3: Schematic diagram of YOLOv3 algorithm target detection results 
Table 1: Comparison of indoor target detection accuracy 

Category YOLOv3 YOLOv2 Faster RCNN 
chair 73.3 52.6 54.4 
bed 74.5 53.8 59.2 
door 77.4 70.2 73.1 
sofa 69.2 61.6 63.6 
cup 86.8 71.3 85.5 

handbag 79.3 72.2 76.5 
person 92.9 85.6 89.4 

cat 93.3 86.5 88.4 
dog 94.2 88.2 85.9 

apple 69.8 62.3 57.3 
banana 65.6 52.3 52.2 
book 72.5 60.3 62.1 
laptop 83.4 74.4 80.1 

tvmonitor 77.5 62.3 60.7 
bicycle 92.3 84.7 80.5 

refrigerator 73.1 63.0 63.2 
suitcase 85.7 79.8 82.2 

backpack 73.9 66.3 66.3 
sports ball 69.6 54.2 60.5 

vase 70.2 60.5 69.8 
AVG 78.73 68.11 70.55 

As can be seen from Table 1, the detection accuracy of YOLOv3 is higher, which is 15.60% and 
11.59% higher than that of YOLOv2 and Faster RCNN respectively. In addition, in terms of detection 
speed, YOLOv3 is also very fast, which can fully meet the requirements of real-time semantic map 
construction in this paper. This paper conducted experiments on a desktop computer equipped with 
GTX 1080Ti, and the detection speed is shown in Table 2. mAP (mean Average Precision) indicates 
the average detection accuracy, and FPS(Frames Per Second) indicates the number of frames detected 
per second. 

Table 2: Comparison of indoor target detection speed 

Detecting 
algorithm mAP/% FPS 

YOLOv3 78.73 43 
YOLOv2 68.11 45 

Faster RCNN 70.55 7 
In this paper, an autonomous mobile robot is used to construct a semantic navigation map. As 

shown in Figure 4, the robot integrates laser sensor, wheel odometer, depth camera, monocular 
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camera, IMU measuring element, 16-channel ultrasonic wave and other devices. Among them, the 
laser sensor is the RPLIDAR A2 LIDAR, which can scan and measure in a 360-degree all-round way, 
so as to obtain the map information of the plane point cloud in the space where the robot is located. 

 
Figure 4: Autonomic mobile robot 

In order to verify the effect of the 2D semantic navigation map construction method proposed in 
this paper, the built mobile robot is used to conduct experiments in the real environment. Figure 5 
shows the two-dimensional semantic navigation map constructed based on the overall scene of the 
laboratory. As we can see, the black area represents the obstacles in the environment, the white area 
indicates that there are no obstacles in this area, while the gray area represents the area that the mobile 
robot has not explored, and the colored marked figure in the figure is the detected target object.The 
proposed method has a clear and concise expression of the environment. The experimental results 
prove that the proposed method can well complete the task of semantic map construction, so as to 
effectively support the robot to complete advanced tasks such as autonomous navigation and human-
computer interaction. 

 

Figure 5: 2D semantic navigation map of laboratory scene 

4. Conclusion  

In this paper, we propose a real-time semantic navigation map construction method based on fast 
object detection, and verify the path planning effect by conducting indoor experiments in real scenes. 
Firstly, based on the laser sensor and odometer data, the Gmapping algorithm is used to construct a 
two-dimensional raster map, and the expression of the real scene is better realized by parameter 
optimization. Then, the YOLOv3 algorithm is used to train the indoor object image dataset, and the 
coordinate mapping mechanism is established to map the category information and location 
information of the detected target object into a two-dimensional raster map. The experimental results 
show that the proposed method achieves good results both in detection speed and detection accuracy 
when recognizing common indoor objects. At the same time, the object category and location 
information recognized by the object detection algorithm are fused into the grid map to complete the 
construction of the semantic map, which can effectively generate a reasonable path and assist the 
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robot to complete more advanced tasks such as autonomous navigation. 
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