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Abstract: This study explores the role of momentum in tennis by developing a mathematical 

model. Firstly, entropy weighting and hierarchical analysis were used to determine the 

weights of the athletes' competitive performance index, and the final results were obtained 

through the game theory combination weighting method. Then, the link between the scores 

of both sides of the match and momentum was analysed by Spearman's correlation 

coefficient, and the correlation coefficient between the two was found to be 0.610, which 

proved the significant influence of momentum on the results of the match. Further, a 

random forest model was used to predict the turning point of the match, and indicators such 

as running distance and winning points were found to have a significant effect on the 

outcome of the match. These findings provide important insights for a deeper understanding 

of the role of momentum in tennis matches, which can help optimise athletes' competitive 

performance and tactical strategies.  

1. Introduction 

Momentum plays an important role in tennis matches, yet its exact impact is difficult to quantify. 

The aim of this study is to develop a mathematical model to systematically analyse the impact of 

momentum on match outcomes. By defining a competitive performance index and applying different 

analytical methods, we selected a match from the 2023 Wimbledon tournament as a case study to 

validate the importance of momentum in the game. Our findings will provide practical data support 

for athletes and coaches to optimise match performance and tactical decisions. Through this study, 

we aim to reveal the key role of momentum in tennis and provide useful insights for the development 

and practice in the field of sports science [1]. 

2. Tennis match evaluation model 

2.1 Fraction size 

The score difference between players can help us better understand the current state of the game 

and the possible outcomes of the game. At the same time, the size of the score difference tends to 

affect the players' game strategy and mental state. Therefore, we use the average score difference in 

a game to measure the readiness of the players. 
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Table 1: The weights of the API 

Object Indicators Description 

AA 

FWP First serve win percentage 

NWP Net winning percentage 

WP Winning point 

DA 

FRP First serve return percentage 

UE Unforced error 

TNSR The number of strokes in a round 

RD Running distance 

4 

SS Serving speed 

BE Break efficiency 

DS Different score 

DF Double fault 

 CG Critical game 

Based on the Table 1 indicators, we further determine the weights of these indicators to achieve a 

combination of indicators. We need to consider the impact of each indicator on the athlete's 

performance, so we use the entropy weight method to comprehensively evaluate multiple indicators. 

The entropy weight method is based on the concept of information entropy to determine the 

importance of indicators and assign the corresponding weights [2]. 

Before using the entropy weight method, we need to standardize these indicators so that the best 

and worst values after each variable change are 1 and 0, respectively. The evaluation variables are 

𝑋1, 𝑋2⋯⋯𝑋𝑘, where 𝑋𝑖 = (𝑥1𝑖 , 𝑥2𝑖⋯⋯𝑥𝑛𝑖), 𝑘 and 𝑛 are the defined evaluation indicators and the 

number of matches respectively. 

We need to standardize data for different indicators so that comparisons can be made on the same 

scale. For different types of data, we use different normalization methods. For the "cost attribute type", 

that is, the smaller the data type, the better it is, we use the following methods for standardization: 

𝑥𝑖𝑛
∗ =

max{𝑋𝑖}−𝑥𝑖𝑛

max{𝑋𝑖}−min{𝑋𝑖}
                              (1) 

For "benefit attribute types", the larger the data type, the better it is, we normalize using the 

following formula: 

𝑥𝑖𝑛
∗ =

𝑥𝑖𝑛−min{𝑋𝑖}

max{𝑋𝑖}−min{𝑋𝑖}
                              (2) 

Where 𝑥𝑖𝑛
∗  is the standardized value of each evaluation index of the match, max{𝑋𝑖}  and 

min{𝑋𝑖}  are the maximum and minimum values of evaluation index 𝑋𝑖  respectively. The 

max{𝑋𝑖} = max{𝑥1𝑖 , 𝑥2𝑖⋯⋯𝑥𝑛𝑖},min{𝑋𝑖} = min{𝑥1𝑖 , 𝑥2𝑖⋯⋯𝑥𝑛𝑖}. 
After standardization, we successfully substitute 𝑥𝑖𝑛

∗  to represent a certain evaluation index 𝑋𝑖 of 

a country. Then, we introduce: 

𝑝𝑖𝑛 =
𝑋𝑖𝑛
∗

∑  𝑘
𝑖=1  𝑋𝑖𝑛

∗                                  (3) 

According to the concepts of information and entropy in information theory, we can calculate the 

information entropy of each evaluation index so that we can get: 

𝐸𝑖 = −ln(𝑘)−1∑  𝑁
𝑛=1  𝑝𝑖𝑛ln(𝑝in )                        (4) 

On the basis of information entropy, we further obtain the weight of each evaluation index we 

defined before: 
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𝑤𝑖 =
1−𝐸𝑖

𝑘−∑ 𝐸𝑖
                                 (5) 

We can then derive the athletic performance Index, and on the basis of calculating these weights, 

we have: 

𝐴𝑃𝐼𝑛 = ∑  𝑘
𝑖=1  𝑤𝑖𝑋𝑖𝑛

∗                              (6) 

The analytic hierarchy process (AHP) is to decompose the relevant elements of the goal problem 

into the levels of goals, criteria and plans, and objectively quantify people's subjective judgment with 

a scale, and substitute a certain degree of objectivity into the subjective. Since this is a traditional 

method, we ignore its calculation process. Finally, we obtain the test coefficient CR to pass the 

consistency test [3]. 

Combined weighting method is to design an algorithm different from subjective and objective 

weighting, which first uses different methods to assign weights, then uses the algorithm to adjust the 

weight of different methods, and finally synthesizes the weight value to achieve objective and 

reasonable weight matching. The game combination weighting model is to find a game equilibrium 

solution in the weights obtained by different single methods, so as to minimize the difference between 

the metric weights of each method and the metric weights of game combination weighting. The 

specific steps are as follows: 

First, create a set of weight vectors 𝑄 = {𝑞1, 𝑞2} according to the weights of the above two 

methods, where 𝑞1 and 𝑞2 are the weight vectors of subjective and objective weights respectively, 

let 𝑏 = {𝑏1, 𝑏2} be the linear combination coefficients, and the linear combination of these vectors 

can be obtained: 

𝑄 = 𝑏1𝑞1
𝑡 + 𝑏2𝑞2

𝑡                                   (7) 

Second, under the guidance of game theory, the linear combination coefficient 𝑏 is continuously 

optimized. The purpose of optimization is to minimize the deviation between 𝑄 and 𝑞𝑖, so as to 

obtain the most ideal index weight vector 𝑄. Using this method, the objective function is determined 

as: 

min∥∥𝑄 − 𝑞𝑖∥∥2, 𝑖 = 1,2                               (8) 

Thirdly, according to the differential property of the matrix, the first derivation of the optimization 

corresponding to the above model is as follows: 

(
𝑞1𝑞1

𝑇 𝑞1𝑞2
𝑇

𝑞2𝑞1
𝑇 𝑞2𝑞2

𝑇) [
𝑏1
𝑏2
] = [

𝑞1𝑞1
𝑇

𝑞2𝑞2
𝑇]                           (9) 

Fourth, according to the above formula, the weight vector set is obtained and normalized, and the 

weight of the game theory combination can be obtained: 

𝑄 = 𝑏1
∗𝑞1

𝑇 + 𝑏2
∗𝑞2

𝑇, 𝑏1
∗ =

𝑏1

𝑏1+𝑏2
, 𝑏2

∗ =
𝑏2

𝑏1+𝑏2
                   (10) 

Finally, we get the weights of 12 indicators, as shown in Figure 1: 
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Figure 1: The weights of 12 indicators 

2.2 Visualization of the game 

In tennis, momentum can be interpreted as a player's morale, confidence, and performance during 

a match, but these metrics are difficult to quantify, so we use the Athletic Performance Index to 

replace the reflection of momentum in a tennis match, with scores per match reflecting a player's 

performance. 

Then we apply the evaluation model to the 2nd set and 4th set of 2023-wimbledon-1701 to obtain 

the scores and performance indicators of players Carlos Alcaraz and Novak Djokovic in each game, 

as shown in Figure 2: 

 

Figure 2: Players' scores and performance reviews 

In the second set, we can notice that Carlos Alcaraz's performance index is much higher than 

Novak Djokovic's, and we can assume that Carlos Alcaraz's momentum is higher than Novak 

Djokovic's. So in terms of points, despite the tug, Carlos Alcaraz took the final victory in the second 

set. 

In Set 4, Carlos Alcaraz's momentum, the Performance Index API, is declining despite his 

dominance in the first four games, while Novak Djokovic is fluctuating but still rising. As a result, 

Novak Djokovic outperformed Carlos Alcaraz in the next few games, while also coming from behind 

in the score, and eventually became the winner. 
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3. Momentum index evaluation model 

In order to clarify whether momentum is a key factor affecting players' performance, we explored 

in depth the momentum difference, score difference and other related indicators of players in the 

game, and constructed a model using Spearman's correlation coefficient to further analyse the 

relationship between these factors and the outcome of the game, so as to reveal the importance of 

momentum in the game and the stochastic nature of players' performance [4]. 

3.1 Spearman correlation coefficient 

Spearman correlation coefficient is a non-parametric index that measures the dependence between 

variables. The monotone equation is used to measure the degree of correlation between hierarchical 

ordering variables to evaluate the correlation of statistical variables. Spearman's correlation 

coefficient is usually defined as the Pearson correlation coefficient between rank variables. For a 

sample size of 𝑛, 𝑛 raw data are converted to registration data, and the correlation coefficient 𝜌 is: 

𝜌 =
∑  𝑖  (𝑥𝑖−𝑥‾)(𝑦𝑖−𝑦‾)

√∑  𝑖  (𝑥𝑖−𝑥‾)
2∑  𝑖  (𝑦𝑖−𝑦‾)

2
                             (11) 

Spearman's correlation coefficient indicates the correlation direction between independent variable 

𝑋 and dependent variable 𝑌. When 𝑋 increases, 𝑌 tends to increase, and spearman's correlation 

coefficient is positive. When 𝑋  increases, 𝑌  tends to decrease, and spearman's correlation 

coefficient is negative. A spearman correlation coefficient of zero indicates that 𝑌 is not trending as 

𝑋 increases. 

3.2 The Establishment of Model 

In order to reflect that the performance of two athletes in the game is related to momentum, we 

choose to use the momentum difference of the athletes in the game, that is, the competitive 

performance index difference, to replace the momentum difference, and the score difference of each 

game to reflect the athlete's performance. 

 

Figure 3: Statistical chart of momentum and score difference 

Spearman correlation coefficient analysis is a non-parametric statistical method, which is widely 

used to analyze different types of data including non-normal distribution. Through data analysis, as 
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shown in the Figure 3, we can see that the difference of athletic performance index is not normally 

correlated with the difference of score. At the same time, we can get that there is a monotone 

relationship between athletic performance index difference and score difference, so we apply 

spearman correlation coefficient method. 

At the same time, we conduct spearman correlation analysis on 12 indicators in the athletic 

performance index, and the results are shown in Figure 4. 

 

Figure 4: Spearman correlation coefficient analysis 

3.3 The Solution of Model 

Finally, we get that the correlation coefficient between the competitive performance index 

difference and the score difference is 0.610, which proves that a player's swing and success in the 

match are not random, and there is a significant relationship between momentum and match 

performance. At the same time, we can also draw from the above Figure 4: 

1) There is a strong positive correlation between winning percentage in front of the net and 

winning points, that is, the stronger the player's ability to score in front of the net, the greater the 

advantage for winning points, and then affect the player's momentum and game performance. 

2) There is a strong positive correlation between the batting times of a round and the running 

distance, which can be explained as the more batting times of a round, the greater the running distance 

of players, which conforms to the actual situation, and proves the rationality of this model. 

4. Transition point judgment model 

The data provided by the competition was used to analyse and process the indicators in the athletes' 

competitive performance metrics. Based on domain knowledge and relevant expert opinions, the 

turning points of the competition were quantitatively defined and predicted using machine learning, 

and a turning point judgement model based on the random forest model was constructed [5]. 

4.1 Data Processing 

Before establishing the correlation regression model, we first preprocess the data. Based on the 

statistical principle, we adopt the boxplot detection method to eliminate outliers, as shown in Figure 

5. Boxplot is an outlier detection method based on statistical principles, which uses the quartile and 

quartile distance of the data to determine whether there is an outlier. 

137



 

Figure 5: Outliers are eliminated by box plot detection 

4.2 Random forest model 

Random forest model (RFM) is an ensemble learning model, which trains samples by constructing 

multiple decision trees and combines their prediction results to meet the prediction accuracy and 

stability [6]. 

When dealing with a large number of features and data such as tennis match data, random forest 

model has great advantages. On the one hand, the decision tree of random forest can train and predict 

in parallel, which means that the computational efficiency can be significantly improved when 

dealing with a large number of data. On the other hand, random forest improves the overall prediction 

accuracy by inheriting the prediction results of multiple decision trees and reduces the error of using 

a single model. 

At the same time, we compare the Gaussian Process Regression model (GPR), Decision tree model 

(DTM) and SVW model, and their fitting effects are shown in Figure 6 below. 

 

Figure 6: Comparison of four models 

Overall, the Random Forest model has the best fit, so we choose the Random Forest model. 

In addition, we select data for fitting analysis of turning points, the end result is shown in Figure 

7: 
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Figure 7: (a) Model fitting analysis (b) Fitting graph near Set1 Game4 

As can be seen from the above graph and the turning point fitting analysis, the model has a good 

fit, so we completed the prediction of the differences in scores across rounds using the random forest 

model. 

Based on the prediction results in Table 2, we think that a point like Set 1 Game 4, for example, is 

considered a turning point if the margin of victory is negative for two or more consecutive predictions 

that follow. 

Table 2: Game turning point prediction 

Set The game of turning point 

Set 1 Game 4 

Set 2 Game 11 

Set 4 Game 7 

Set 5 Game 6 

5. Conclusions 

In this paper, the competitive performance index model was successfully established, and the 

momentum of athletes in the match was quantitatively assessed by entropy weighting, hierarchical 

analysis and game theory combination weighting methods, revealing the actual impact of momentum 

in tennis matches. Secondly, the results of Spearman's correlation coefficient analysis showed a 

significant correlation between the score and momentum, confirming the importance of momentum 

on the outcome of the match. Finally, the Random Forest model was used to successfully predict the 

turning point of the match, and the significant influence of indicators such as running distance and 

winning points on the outcome of the match was found. 
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