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Abstract: Aiming at the problem of insufficient feature extraction in some deep learning-

based gearbox fault diagnosis models under small sample conditions leading to lower fault 

diagnosis accuracy and larger number of parameters, in this paper, a lightweight gearbox 

fault diagnosis method based on depth-separable cascade residual block and feature 

weighting module is proposed. Firstly, the one-dimensional original signal of the gearbox is 

used as the input of this model, which reduces the loss of information in data processing. 

Then the depth-separable cascade residual block is constructed, which utilizes the depth-

separable convolution with a cascade residual structure to maximize the extraction of fault 

information while reducing the amount of feature parameters. Finally, the feature weighting 

module strengthened the model's identification and exploitation of key features by 

calculating the contribution of each channel and giving them weighting. The experimental 

validation is given by the gearbox dataset of Southeast University, and the experimental 

results show that the proposed method achieves 99.99% fault diagnosis accuracy under the 

original signal, and 99.60% under the SNR=6dB noise environment, which shows that the 

proposed method has high fault diagnosis accuracy and low complexity under the small 

sample condition. 

1. Introduction 

In modern industry and transport field, gearbox as the core power transmission and speed change 

device, its performance is directly related to the efficiency, reliability and economy of the whole 

mechanical system [1,2]. The gearbox can accurately regulate the speed and torque to satisfy meet 

the demands of different working conditions and to ensure the smooth operation of mechanical 

systems in a variety of complex environments. However, there are many challenges to the efficient 

and reliable operation of gearboxes [3,4]. Due to continuous load operation, wear and tear, 

lubrication failure, as well as improper operation and other factors, gearboxes may have various 

failures, such as gear wear, bearing damage, or lubricant deterioration, etc. These failures, if not 
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detected and handled in a timely manner, may lead to inefficiency of the entire system, or even 

huge casualties and property losses [5-7]. 

Traditional gearbox fault diagnosis methods [8,9] are able to obtain fault characteristics and 

complete fault diagnosis by using data samples to construct mapping relationships between input 

features and output types. Zhou et al [10] proposed a gearbox fault diagnosis method based on 

improved fine composite multi-scale inverse weighted entropy and support vector machine (SVM) 

in order to solve the problem that the coarse-graining processing of multi-scale weighted entropy is 

prone to information loss and unable to comprehensively extract the fault information of gearboxes. 

This method introduces fine composite multi-scale inverse weighted permutation entropy to 

effectively alleviate the shortcomings of the traditional coarse-grained processing and strengthen 

the quality of fault features, and then the SVM classifier was used to give recognition to the fault 

features. Xie et al [11] proposed an adaptive variational modal decomposition (VMD) based fault 

diagnosis method for gearboxes, which uses a comprehensive evaluation index to adaptively select 

the K-value in the variational modal decomposition (VMD), and reconstructs the original signals to 

achieve noise reduction and feature enhancement of the signals. Then the feature vectors of the 

moving signal are fully extracted using the fine composite multiscale scattering entropy. Finally, the 

extracted features are given recognition using the kernel limit learning machine optimized by 

particle swarm algorithm. The problem that the vibration signals collected in gearbox fault 

diagnosis contain complex noise interference and redundant components is effectively solved. 

Although these methods have achieved better diagnostic results, the traditional methods are overly 

dependent on artificial prior knowledge, resulting in poor diagnostic stability of these methods. 

In recent years, with the continuous development of deep learning technology, more and more 

researches have begun to focus on the use of this technology to improve the accuracy and efficiency 

of gearbox fault diagnosis. Deep learning models, especially Convolutional Neural Networks 

(CNNs) [12,13], have been widely used to automatically detect and identify early fault signals in 

gearboxes due to their superior capabilities in feature extraction and pattern recognition. These 

models are able to learn complex fault features from large amounts of sensor data and optimize their 

parameters through training to adapt to different operating environments and fault types. Yan et al 

[14] reduced the interference of noise on the original signal by Gaussian filtering, and used 

Transformer and convolutional neural network to fully extract the fault information, and 

experimental validation was given using two gearbox datasets, which effectively solved the 

problem that the operating environment of some gears is complex, which leads to the problem of 

insufficient sample data collected. Gu et al [15], in order to solve the problems of poor model 

generalization ability and low diagnostic accuracy caused by sample distribution imbalance in 

planetary gearbox fault diagnosis, used Gram's angle field image coding technique to convert 1D 

vibration signals into 2D images, and then used the 2D images as inputs for deep convolutional 

generative adversarial network to achieve the expansion of the fault samples, and finally trained the 

original 2D images and generated image samples with an AlexNet convolutional neural network to 

achieve fault diagnosis of gearbox. Tan et al [16] proposed a gearbox fault diagnosis method based 

on graph attention network, which uses the spectrum of the original signal to define the nodes and 

edges, constructs the graph structure, then inputs the graph structure into the graph attention 

network, and embeds the neighbour self-attention mechanism in the graph attention network to 

adaptively extract the node features and structural features of the graph structure, and finally gives 

the fault identification using the classifiers, which effectively solves the problems such as non-

smoothness, feature aliasing and low diagnostic correctness of wind turbine gearbox fault vibration 

signals. Xie et al [17] decomposed the original signal into a number of eigenmode components by 

variational modal decomposition and used wavelet thresholding to perform noise reduction on the 

eigenmode components and reconstruct the signal, and then the reconstructed signal was 
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transformed into grey scale map and then inputted into convolutional neural network to give fault 

diagnosis. Experimental validation is given through gearbox data, and the results show that the 

proposed method has a high fault diagnosis accuracy, which solves the problems of the complexity 

of the actual working environment of the gearbox, the traditional method of extracting features, and 

the lack of performance of grey-scale map extracted features. 

The above methods have high fault diagnosis accuracy under different conditions by 

constructing deep learning models, however, there are also the following problems: (1) All of the 

above methods use sufficient data to train the network model, however, in the actual industrial 

process, it is very difficult to obtain sufficient data. (2) All of the above methods give processing to 

the original data through data processing methods, without considering the problem of model 

lightweighting, which may lose part of the fault information while increasing the model complexity. 

Therefore, to solve the above problems, in this paper, an end-to-end fault diagnosis method for 

lightweight gearboxes is proposed. Firstly, the original signal is directly input into the deep learning 

model to give fault diagnosis, which avoids the problem of losing some fault features. Second, the 

depth separable convolution and cascaded residuals are used to construct a depth separable 

cascaded residual block, which effectively extracts the fault features while having fewer model 

parameters, and finally, the feature weighting module is constructed to give weights to different 

channels and adjust the weight values, so that the model is able to mine more important feature 

information. The experimental validation is given by gearbox data from Southeast University, and 

the results show that the proposed method has a high fault diagnosis accuracy. 

2. Basic Theory 

Deep separable convolution is a technique commonly used in convolutional neural networks, 

which is rapidly developing with a unique step-by-step computation, it not only extracts and 

transforms rich feature information, but also reduces the number of parameters and computational 

complexity of the model. First, it applies a deep convolution operation to the input data, and then it 

applies a point-by-point convolution operation to the output of the deep convolution. 

Deep convolution is a technique that performs convolution independently for each channel of the 

input data, suppose the input data has c channels, deep convolution uses c separate convolution 

kernels to perform convolution operations on each channel, deep convolution is the convolution 

operation is given independently on each channel, thus reducing the number of references.  

Point-by-point convolution is an operation that gives a convolution of the output of the deep 

convolution using the convolution of a 1×1 convolution kernel to convert it to the desired output 

dimension. It serves to give a linear combination between channels of the output feature maps of the 

deep convolution to get the final output feature maps. 

Suppose the size of the convolution kernel for convolution is h wK K , the number of input 

channels is iC , and the number of output channels is oC . Then the formula for the number of 

parameters obtained after the input signal is processed by ordinary convolution is shown in Eq. (1): 

( 1)h w i onum K K C C                                                     (1) 

And the formula for calculating the amount of feature parameters and operations after deeply 

separable convolution is shown in Eq. (2): 

( 1 1) (1 1 1)h w i i onum K K C C C                                            (2) 

It can be seen that the number of parameters of the deep separable convolution is much smaller 

than that of the ordinary convolution, which shows that the deep separable convolution can 
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effectively improve the computational efficiency of the network model. 

3. Fault diagnosis method for lightweight gearboxes based on depth-separable cascaded 

residual block and feature-weighted module 

3.1. Depth separable cascade residual block  

The real working environment of a gearbox is very harsh, and the signals generated by its own 

vibration and friction are often mixed with the noise generated by the surrounding environment, 

which makes it difficult to extract fault features. Extracting features using multiple convolutional 

layers and feature mapping is a common approach, however, this operation will not only increase 

the amount of feature parameters, but also make the deep features and the original features out of 

correlation, resulting in poor fault diagnosis. To address the above problems, in this paper, the depth 

separable cascade residual block is designed, and the structure of this module is shown in Fig. 1.   

 

Figure 1: Depth separable cascade residual block 

To address the problem of difficult feature extraction and large amount of feature parameters, the 

module chooses 2 layers of depth-separable convolution with different scales for feature extraction. 

The first layer of the module uses a depth-separable convolution with a convolution kernel size of 7. 

This convolution captures the global fault features hidden in the interference signal in a wide range, 

which can effectively resist the performance impact of noise on the proposed model. The second 

layer uses a depth-separable convolution with convolution size 3. This convolution maps the 

features extracted in the upper layer into a higher nonlinear space to generate a high-level feature 

representation. This operation amplifies weak fault features to the extent that these weak faults are 

not lost in the later layers of propagation. 

To address the problem of deep features being uncorrelated with the original features, this 

module concatenates the original inputs in the second and third layers of inputs. This connection 

allows the model to learn the residual information by "skipping" certain layers, which allows the 

original features to be learned repeatedly at each layer. This operation not only helps to improve the 

model training and convergence speed, but also does not detach the original fault features as the 

network depth increases. To improve the computational efficiency and performance of the model, 

each depth-separable convolution of the module is followed by a Relu activation function and layer 

normalization. 

3.2. Feature weighting module 

After feature extraction with depth-separable cascaded residual block, the features of different 

fault types are distributed irregularly in different channels. To reduce the complexity of the model, 

the channels containing more fault features should be given larger weights, while the channels 

containing fewer fault features or no features should be given smaller weights. To address this 

problem, the feature weighting module is designed, and the structure of this module is shown in Fig. 
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2. 

 

Figure 2: Feature weighting module 

Firstly, this module uses a global average pooling layer to downscale and compress the features 

as shown in Eq. (3), which ultimately compresses the input features to 1×1×C. The benefit of doing 

so is that it reduces the number of parameters and computation, and improves the efficiency of the 

model. At the same time, global average pooling helps to capture the global importance of each 

channel in the feature map since it extracts the overall information of the feature map. 

1 1

1
( , )

H W

c c

i j

Out u i j
HW  

                                                        (3) 

where c is the serial number of the compressed channel, cOut is the compressed value of the first 

c -channel; and ( , )cu i j is i j dimensional two-dimensional matrix. 

Secondly, the module uses a one-dimensional convolution to nonlinearly transform the 

compressed global description, thereby increasing the expressiveness of the feature map.This 

introduces more flexibility and non-linearity, allowing the model to learn more complex and 

abstract feature representations. Next, to increase the performance of the model, this module adds 

an ELU activation function behind the 1D convolution. This function is an improvement on the 

Relu function, on one hand, the ELU function is not a constant zero on the negative interval, thus 

avoiding the zero-gradient problem of Relu and making the neural network more stable during the 

training process. On the other hand, ELU is smooth and conductible over the entire range of real 

numbers, including the negative interval. In contrast, Relu is not derivable on negative intervals, 

which may lead to the problem of vanishing or exploding gradients, and the smoothness of ELU 

helps to improve the training speed and stability of the model. This step-by-step process is shown in 

Eq. (4): 

2 1( ( ))c cs f W W Out                                                            (4) 

where cs
is the fault feature after activation, ( )f is the sigmoid activation function, 1W

and 2W
are 

the weight parameters of the two 1D convolutions, ( ) is the ELU activation function. 

Finally, the weights of the excited features are multiplied with the original feature map to obtain 

a weighted feature map. This weights the feature map according to the importance of each channel, 

which allows the model to focus more on important features and suppress unimportant ones. This 

helps to improve the performance and generalization of the model, enabling the model to adapt 

better to different tasks and data, the process is shown in Eq. (5). 

c cF s Out                                                                    (5) 

where F is the weighted feature map. 

3.3. Fault diagnosis method 

To address the problem of insufficient feature extraction in some deep learning-based gearbox 
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fault diagnosis models under small sample conditions leading to lower fault diagnosis accuracy and 

larger number of parameters, a lightweight gearbox fault diagnosis method based on a depth-

separable convolutional feature extraction module and a feature weighting module is proposed. The 

method mainly consists of an input layer, a depth-separable cascade residual block, a feature 

weighting module, a dimensionality reduction layer and an output layer, and the structure is shown 

in Fig. 3. In which, the task of the input layer is to normalize the vibration signals collected by the 

sensors. The Deep Separable Cascade Residuals module is used to maximize the extraction of fault 

information while reducing the number of feature parameters. The Feature Weighting module 

improves the identification and use of key features in the model by calculating the contribution of 

each channel and weighting it to remove redundant information. 

 

Figure 3: Structure of the proposed method 

3.4. Fault Diagnosis Process 

The fault diagnosis flowchart of the proposed method is shown in Fig. 4, and its diagnosis 

detailed steps are: 

Step 1: Gearbox vibration signals are collected using sensors. 

Step 2: Firstly, the vibration signals are normalized, secondly, the normalized data are divided 

into training set, verification set and test set according to a fixed ratio. 

Step 3: Firstly, the model is initialized, and then the training set is fed into the proposed model 
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for feature extraction and learning, and the model parameters are updated using the back-

propagation algorithm. 

Step 4: Judge whether the number of model training times reaches the designed batch, if so, save 

the model, if not, continue training. 

Step 5: Feed the test set data into the saved model for testing and output the fault diagnosis 

results. 

 

Figure 4: Fault diagnosis flow chart 

4. Experimental validation 

In this paper, the gearbox dataset is selected for the experiment from Southeast University, and 

the test rig is mainly composed of motor, motor controller, planetary gearbox, reduction gearbox, 

and load controller. The dataset is collected from the Driveline Dynamic Simulator (DDS) shown in 

Fig. 5, with a total of 8 channels of signals and the sampling frequency of 5120 Hz. The gears for 

different failure states are machined in advance and the variable speed can be achieved by the motor 

controller, while the change in load can be achieved by the load controller.  

 

Figure 5: Installation diagram of the experimental platform 
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Two different operating conditions are primarily investigated, with the tacho system load set to 

20HZ-0V or 30HZ-2V. The dataset contains five different operating conditions: four fault types and 

one health state. Therefore, fault diagnosis of the DDS is a 5-classification task, and data from 2 

channels of the bearing dataset with the tacho load configuration set to 20Hz-0V are selected for 

verification, with 1,000 samples selected for each type of fault, and the length of each sample is 

2,048 data points. The training, validation, and test sets are divided in the ratio of 8:1:1 and the 

dataset description is shown in Table 1. 

Table 1: Division of the data set. 

Type of fault Sample training set Sample Validation Set Sample test set 

defective 800 100 100 

broken tooth 800 100 100 

Tooth root cracks  800 100 100 

Tooth surface wear 800 100 100 

Normal condition 800 100 100 

4.1. Data enhancement 

To mitigate the potential negative impact of a small amount of anomalous data in a dataset on the 

accuracy of gearbox fault diagnosis, in this paper, data collected by sensors mounted on gearboxes 

are normalized. This process not only helps to improve the robustness of the model to anomalous 

data, but also when dealing with small samples of data, normalization enhances data consistency in 

the model learning process, thus improving the accuracy and reliability of fault diagnosis. 

Normalization ensures that data with different characteristics have a balanced impact on model 

training by adjusting the data scale, which is particularly important in small sample scenarios. 

Because each sample is extremely valuable, ensuring that they can be used to maximum effect 

during model training optimizes fault diagnosis performance, the mathematical expression for 

normalization is as follows. 

 

   
i i

i

i i

z min z
z

max z min z


 


                                                          (6) 

where
iz  is the normalized data, iz is the raw data,  imin z is the minimum value and  imax z is 

the maximum value. 

In addition, the data enhancement method used in this paper is overlap sampling, which collects 

the original signal to select some samples as training samples, the length of each segment is 2048 

samples, the overlap sampling points are 1984, the step size is 64, and the sampling process is 

shown in Figure 6. For the test set, there is no overlap sampling. Assuming that a segment of the 

signal has 10000 sampling points, the length of the training samples collected each time is 2048, 

and the step size is 1, a maximum of 7951 training samples can be produced, and the sampling 

formula is shown in Eq. (7). 

int_
Sample= 1

total po sample

stride


                                                   (7) 

where total is the length of the sampling points, int_po sample is the length of the signal 

sampling points per segment, and stride is the sampling step size. 
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Figure 6: Overlapping sampling method 

4.2. Comparison of methods 

To prove the effectiveness of the methods and its advantages compared to other fault diagnosis 

methods, experiments with the same batch size, learning rate, and other hyperparameters are 

selected for comparison with other deep learning fault diagnosis methods, using accuracy as 

indicator. The results of different methods are shown in Table 2. 

Table 2: Accuracy rate of different methods. 

Method Accuracy (%) 

ANCEEMD [18] 97.26 

DNN [19] 96.22 

GAF-DCGAN [20] 98.57 

MC-MSDARL [21] 97.00 

Proposed method 99.99 

As can be seen from Table 2, the DNN method has the lowest accuracy of 96.22%, the 

ANCEEMD, DPD-1DCNN and GAF-DCGAN methods have higher complexity and better results 

than DNN, with accuracies of 97.26%, 97.40% and 98.57%, respectively. Although ANCEEMD 

and MC-MSDARL methods can extract the features of the signal to some extent, for some complex 

failure modes, if the sample data is small, it may affect the effect of feature extraction, which 

requires further improvement and optimization of the algorithm model. Although GAF-DCGAN 

improves the image generalization by converting the data into two-dimensional image, the synthetic 

data generated by using a deep convolutional generative adversarial network for data enhancement 

may have a certain instability, which may introduce some noisy or unrealistic features and affect the 

accuracy of fault diagnosis. The proposed method uses deep separable convolution to effectively 

reduce the parameters and computational complexity, combined with the residual learning 

mechanism, which helps to solve the gradient vanishing problem when training the deep network. 

Meanwhile, it ensures the depth and efficiency of feature extraction, in addition, the proposed 

method strengthens the ability to recognize the key features by weighting the features in different 

channels. 

4.3. Variable Noise Experiments 

To compare the recognition accuracies of the methods under different noise levels more directly, 

the results are presented based on the confusion matrix, as shown in Fig. 7. Compared with the 

comparison methods, almost all methods achieve good results without noise. However, the increase 

in noise level decreases the accuracy of all the methods to varying degrees. In contrast, the proposed 
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method shows strong robustness to strong noise and an accuracy of 99.60%, which proves that the 

proposed method has strong noise immunity. 

 

(a) DNN                        (b) ANCEEMD 

 

(c) GAF-DCGAN           (d) MC-MSDARL 

 

(e) Proposed method 

Figure 7: Diagnostic accuracy of different methods at 6dB 
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4.4. TSNE Visualization 

To visualize the performance of this paper's method under different noises, Fig. 8 gives the 

visualization results of the different layers of the proposed method at 6 dB SNR. 

 
(a)Input data (Left)        (b) First depth separable joint residual block (Right) 

 

(c)Third depth separable joint residuals block (Left)      (d) Classification layer (Right) 

Figure 8: Visualization results of different layers with SNR=6dB 

In Fig. 8, the graph (a) shows the original signal visualization results, the five types of defects 

are disordered, overlapped with each other and indistinguishable from each other. The graph (b) 

shows the visualization results of the first depth separable joint residual block, the five types of 

faults have a tendency to separate from each other, but they still can't be effectively distinguished. 

The graph (c) shows the visualization results of the third depth separable joint residual block, the 

five types of faults are separated from each other, and the graph (d) shows the visualization results 

of the classification layer, the five types of faults are better behaved in terms of feature clustering, 

where there is no obvious misclassification phenomenon for the different states. The results show 

that the proposed method can cluster accurately without misclassification. 

4.5. Comparison of model parameters 

To verify the specific effect of the proposed method in lightweight, four current mainstream 

methods are cited to compare with the proposed method under the data of adding 0dB SNR, the 

comparison methods are ANCEEMD, DNN, GAF-DCGAN, and MC-MSDARL, the experimental 

results are shown in Table 3. DNN and ANCEEMD have smaller parameters among the four 

methods, GAF-DCGAN has the most parameters, and MC-MSDARL is a method with good 

running speed and parameters. The proposed method is superior to other networks in terms of 
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parameters and accuracy. The main reason is that the proposed method reduces the parameters by 

deep separable convolution, calculates the contribution of each channel by using the feature 

weighting module, and weights them, which strengthens the model's identification and utilization of 

key features. Therefore, the proposed method can achieve high robustness and high accuracy at the 

cost of limited neurons. 

Table 3: Comparison of parameters. 

Method  Parameters Time (ms) Average accuracy (%) 

DNN 5.51×104 100 92.18 

ANCEEMD 7.72×105 447 94.32 

GAF-DCGAN 10.28×107 2280 93.64 

MC-MSDARL 8.24×106 1295 97.21 

Proposed method 1.17×105 189 99.13 

4.6. Ablation Experiments 

In this experiment, we set up three experiments to verify the effectiveness of the fault diagnosis 

of each module in the proposed method. The network structures are DSC, DSC-CR, and DSC-

CRFW, where DSC, CRB-CR, and DSC-CRFW indicate that only one structure is changed.DSC is 

the method that does not use the cascaded residual module.CRB-CR replaces the standard 

convolution with the cascaded residuals, and DSC-CRFW is outputted directly after three feature 

extraction layers, which means that it does not have the feature-weighting module, and the rest of 

the network parameters are the same as those in the proposed method is the same. Different signal-

to-noise ratios are added for experimental comparison and the results are shown in Table 4 and Fig. 

9. 

Table 4: Comparison of ablation experiments. 

Method 
Accuracy (%) 

-4dB -2dB 0dB 2dB 4dB 

DSC 74.22 75.17 86.68 92.7 98.54 

DSC-CR 80.19 82.12 90.28 94.00 99.27 

DSC-CRFW 81.88 86.29 99.13 99.29 99.98 

As shown in Table 4, the DSC has lower diagnostic accuracy in high noise environments 

because it does not use the CR module, which results in lower detection accuracy than the DSC-

CRFW at different signal-to-noise ratios. 

 

Figure 9: Ablation experiments at different SNRs  
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4.7. Noise resistance performance experiment under different number of samples 

In the operating environment of bearings, the number of fault samples is uncertain, so the 

diagnostic method must be able to effectively accomplish fault identification with either more or 

fewer samples. However, when the number of samples is too large, it leads to increased model 

training time and memory consumption. Therefore, diagnostic methods need to accomplish fault 

identification with as few samples as possible. 

To verify the effectiveness and generalization performance of the proposed method, a 4db white 

noise signal will be added to the original signal, the model will be trained using the different 

number of samples, and the sample selection will be repeated 5 times for each experiment to reduce 

the bias of randomly selecting a small training set, and the results will be averaged over 5 

experiments to ensure that the results of the faults are reasonable. The experimental results are 

shown in Table 5. 

Table 5: Fault diagnosis accuracy with different samples. 

Total sample size ANCEEMD DNN GAF-DCGAN MC-MSDARL Proposed method 

120 72.58 68.74 80.55 82.62 90.27 

180 77.49 70.88 84.33 88.53 93.22 

240 80.28 75.68 88.29 90.27 94.58 

300 85.44 80.55 90.18 93.33 96.55 

360 88.96 88.74 93.21 94.28 98.88 

420 94.52 93.20 96.66 97.24 99.90 

As can be seen from Table 5, the accuracy of the proposed method gradually increases with the 

increase in the number of samples. When the number of samples is 360 and 420, the accuracy rates 

are 98.88% and 99.90%, respectively, and when the number of samples is increased by 60, the 

accuracy rate increases by 1.02%.  

To verify the superiority of the proposed method with the small samples, we conducted a 

comparison experiment with the comparison method, and the results are shown in Fig. 10.  

 

Figure 10: Fault category accuracy at 4 dB  

As shown in Fig. 10, when the number of samples is 120, the accuracy of the comparison 

method is 72.58%, 68.74%, 80.55%, and 82.62%, respectively, while the proposed method is 

90.27%. This shows that the method is still able to accomplish the fault diagnosis task with fewer 

samples in a less-sample environment. 
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5. Conclusions  

To solve the problem of insufficient feature extraction in some deep learning-based transmission 

fault diagnosis models under small sample conditions, which leads to lower fault diagnosis accuracy 

and larger number of parameters, this paper proposes a lightweight transmission fault diagnosis 

method based on depth-separable cascade residual block and feature weighting module. The 

conclusions are as follows: 

(1) The one-dimensional raw vibration signal of the transmission is used as the input of this 

model, which reduces the information loss in data processing. 

(2) A depth-separable convolutional feature extraction module is constructed, which utilizes 

depth-separable convolution with cascaded residual structure to maximize the extraction of fault 

information while reducing the amount of feature parameters. 

(3) The final feature weighting module strengthens the model's identification and utilization of 

key features by calculating the contribution of each channel and weighting them. 

(4) Experimental validation is carried out using the Southeast University's gearbox dataset, and 

the experimental results show that the proposed method achieves a fault diagnosis accuracy of 

99.99%, and the fault diagnosis accuracy is 99.60% in the SNR=6dB noise environment, which 

indicates that the proposed method has a high fault diagnosis accuracy and low complexity under 

small samples. 
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