
A Comprehensive Review of Text Classification

Algorithms

Yachang Song1, Xinyu Liu1, Ze Zhou1

1College of Electronic Information, Xijing University, Xian, China

Keywords: Text Classification, Deep Learning, Pre-trained Models, Natural Language

Processing, CNN, RNN, BERT

Abstract: This paper reviews the development of text classification algorithms, from rule-

based and traditional machine learning methods to the evolution of deep learning and pre-

trained models. As a crucial aspect of natural language processing, text classification is

essential for various applications, such as information retrieval and sentiment analysis. The

application of deep learning models like CNNs, RNNs, and pre-trained models such as BERT

in text classification is highlighted, showcasing their advantages in processing large corpora.

The challenges and future research directions in text classification are also discussed, offering

guidance to researchers and practitioners in the field.

1. Introduction

Text classification[1], a fundamental task in natural language processing, categorizes texts into

predefined categories. Initially dependent on manually crafted rules like keyword matching, the field

has advanced with statistical learning methods such as Naive Bayes[2] and SVMs[3], enhancing

automation and performance. The 21st century saw deep learning technologies like CNNs and RNNs

capture deeper textual features. Recently, Transformer-based pre-trained models like BERT and GPT

have emerged, setting new benchmarks by learning rich language representations. Despite significant

progress, challenges remain, including low-resource language processing, enhancing model

generalization, and reducing resource consumption.

2. Fundamental Knowledge

2.1. Text Classification Paradigms

Text classification has evolved from rule-based, machine learning, to deep learning approaches.

Initially, rule-based methods classified text by defined rules, precise but costly and less adaptable.

Machine learning methods, such as supervised learning algorithms like Naive Bayes, SVMs, and

decision trees, as well as unsupervised learning techniques like cluster analysis and automated

learning and adaptation, require extensive training data. Deep learning methods, especially CNNs,

RNNs, and Transformer models, have excelled by learning complex features and capturing deep

semantics, notably improving text classification performance in the pre-training and fine-tuning

framework.

Journal of Electronics and Information Science (2024)
Clausius Scientific Press, Canada

DOI: 10.23977/jeis.2024.090205
ISSN 2371-9524 Vol. 9 Num. 2

34

2.2. Fundamentals of Text Classification

Key to text classification is converting raw text into a model-processable format, including text

cleaning, tokenization, stop word removal, and stemming. Feature extraction transforms preprocessed

text into feature vectors, using models like Bag of Words (BoW), TF-IDF, and embeddings like

Word2Vec. Model training and evaluation use labeled datasets, assessing performance through

accuracy, recall, and F1 scores, further optimized by parameter tuning and cross-validation.

3. Text Classification Models

This section delves into key machine learning models, including Naive Bayes, SVMs, CNNs,

RNNs, and Transformer models. Each model's development background, theoretical principles, main

applications, and achievements are explored, demonstrating their effectiveness in solving text

classification challenges.

3.1. Naive Bayes Classifier

In the field of natural language processing, especially in the task of text classification, the Naive

Bayes classifier holds an indispensable position. This simple probabilistic classifier, based on Bayes'

theorem, has become a powerful tool for addressing issues such as spam email detection and

document categorization due to its straightforward mathematical principle and efficient

implementation. Despite the foundational assumption of the Naive Bayes classifier — the

independence between features — which often does not hold true in real applications, this model still

demonstrates outstanding classification performance across various datasets.

The working principle of the Naive Bayes classifier is based on Bayes' theorem, a simple yet

influential formula in probability theory. It is used to calculate the probability of a hypothesis given

some evidence, as shown in the following equation:

𝑃(𝐶𝑘 ∣ 𝑥) =
𝑃(𝑥∣𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑥)
 (1)

In this formula, P(Ck∣x) represents the posterior probability that the given text x belongs to

category Ck. P(x∣Ck) indicates the likelihood of text x appearing, given that it belongs to category

Ck.P(Ck) is the prior probability of category Ck, that is, the probability of category Ck occurring before

any text information is provided. Finally, P(x) is the probability of the occurrence of text x. By

calculating these probabilities, the Naive Bayes classifier can determine the most likely category to

which the given text belongs.

3.2. Classification Method Based on Support Vector Machine Model

The Support Vector Machine (SVM), proposed by Cortes and others, is a powerful machine

learning model widely used in text classification tasks. Its fundamental principle is to find the optimal

decision boundary, namely the maximum-margin hyperplane, to distinguish between different

categories of data points. Due to its excellent generalization ability, SVM performs outstandingly in

many high-dimensional data classification tasks, including text classification.

When applied to text classification tasks, the core concept of SVM is to transform each text in the

dataset into a feature vector, and then to construct a separating hyperplane to maximize the distance

between support vectors, thereby achieving the purpose of classifying text data. Given a set of text

data, each text is transformed into a high-dimensional feature vector xi∈Rp, where each dimension

represents a feature (such as the importance of a word or its frequency), and yi∈{−1,1} represents

35

the category label for each text. SVM seeks to find a hyperplane in this high-dimensional space:

𝑤 ⋅ 𝑥 + 𝑏 = 0 (2)

where w is the normal vector to the hyperplane, and b is the bias term. The choice of the hyperplane

follows the principle of maximizing the margin, that is, minimizing ∥w∥2 while ensuring that all

data points satisfy:

𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏𝑖) ≥ 1, 𝑖 = 1,…… 𝑙 (3)

Solving this minimization problem ensures that the distance from the hyperplane to the nearest

data points (i.e., the support vectors) is maximized, thus enhancing the model's generalization ability.

However, in actual text classification tasks, it is often difficult to find a perfect classification

hyperplane that completely separates all samples. This challenge can be addressed by introducing

slack variables ξi≥0 to meet the following conditions:

𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) ≥ 1 − ξ𝑖 , 𝑖 = 1, …… 𝑙 (4)

After introducing slack variables, the optimization goal of SVM simultaneously considers

maximizing the margin and minimizing classification errors, thereby adapting to complex and noisy

real text data while maintaining model generalization ability. This method provides a robust model

framework for text classification, especially suitable for dealing with high-dimensional, sparse text

datasets, making it an effective tool for solving text classification problems.

3.3. Classification Method Based on Decision Tree Model

The application of decision tree models in text classification aims to predict the category of texts

by learning decision rules from text features. Initially, it is necessary to extract features from the text

data, such as word frequency and key terms within documents. Subsequently, these features are used

to construct a decision tree. The decision tree model employs a supervised learning approach, building

a tree structure from the top down through recursive partitioning. Its core objective is to analyze the

training dataset to learn a series of decision rules, thereby constructing a model capable of predicting

the category of target variables. After the complete construction of the decision tree, pruning is often

applied to the model to reduce the negative impacts of noise and overfitting phenomena on

classification performance.

The decision tree model is a method that recursively builds a tree structure from the data in a

supervised learning manner, aiming to predict the category of target variables by learning decision

rules from the training data. This model is constructed in a top-down approach. Once the decision

tree is fully built, pruning techniques can be utilized to reduce noise and overfitting, thereby

enhancing the model's accuracy in classifying new data.

4. Deep Learning Models in Text Classification

Deep learning has revolutionized fields like image recognition and machine translation by learning

complex feature relationships. This section discusses foundational network models like FNNs, RNNs,

and CNNs in text classification, their unique advantages, and the further enhancement of model

performance through text embedding techniques.

4.1. Text Classification Method Based on Basic Network Models

Deep learning technologies, by automatically discovering hidden feature patterns, have reduced

the need for feature engineering, showcasing unique advantages and significant achievements in text

36

classification through feedforward neural networks, recurrent neural networks, and convolutional

neural networks.

Feedforward Neural Networks (FNN)[4] serve as the basic framework for deep learning in text

classification, consisting of input layers, embedding layers, multiple stacked neural network

processing layers, and output layers. The FastText[5] model builds on this by incorporating character-

level n-grams as features, enhancing the understanding and generalization of infrequent words,

though it has limitations in handling long-distance sequence dependencies and complex semantics.

To delve deeper into the rich semantic information contained in texts and effectively address the

context dependency issues in longer texts, researchers have turned to Recurrent Neural Networks

(RNN)[6] to model the sequential nature of text. Text is understood as a series of words arranged in

temporal order, such as text S = {w1, w2, ..., wn}, where each word wi represents its state at a specific

time ti. RNNs are widely regarded as effective tools for handling such sequential data. However,

standard RNNs often encounter vanishing gradient problems when processing long sequences,

making it difficult for the model to retain information about long-distance dependencies. To address

this challenge, variants of RNNs, such as Gated Recurrent Neural Networks and Long Short-Term

Memory networks (LSTM)[7], are commonly used in text classification research. LSTMs manage the

flow of information effectively through memory cells and three special gates (input gate, forget gate,

output gate), thereby preserving long-term dependency information.

Recurrent Neural Networks (RNN) excel in processing the temporal characteristics of text, while

Convolutional Neural Networks (CNN) demonstrate advantages in phrase or keyword identification

through the TextCNN model, using multi-size filters to capture local features of text. TextCNN

integrates key information through max pooling to form advanced representations, effectively

revealing local semantics but is limited in handling long-distance dependencies.

Furthermore, the development of text embedding technologies has further enhanced model

performance, including character-level, word-level, and sentence-level embeddings, each addressing

the issues of out-of-vocabulary words, learning grammatical and semantic information, and capturing

the potential connections between sentences.

Overall, compared to traditional machine learning methods, deep learning's basic network models

show significant advantages in processing word order information and deep semantic analysis.

However, these foundational models also have their own limitations, such as the simplicity of the

model structure and the capacity to model specific types of information.

4.2. Classification Method Based on Graph Neural Network Models

Graph Neural Networks (GNNs)[8] enhance the performance of classification tasks by mining the

internal graph structure information of texts, such as syntactic and semantic dependency trees. GNNs

utilize an information propagation mechanism, iteratively improving node representation by

aggregating information from neighboring nodes and combining it with the node's own representation.

Various aggregation and combination functions have led to a diversity of GNN architectures,

adaptable to different application scenarios.

GNNs demonstrate flexibility and effectiveness in text classification tasks across different scales,

from words to documents. TextRank, a pioneer in applying graph structures to text classification,

constructs graph models with nodes and edges representing text units and their relationships, catering

to a wide range of text processing needs from sentiment analysis to topic classification.

On a more macroscopic, document-level, Peng and others introduced a graph-based CNN model

in 2018. This model represents texts as word graphs and uses graph convolutions to feature these

word graphs for document classification. This method effectively captures discontinuous and long-

distance dependencies within texts, leveraging the powerful semantic learning capabilities of CNNs.

37

In 2019, Yao and his team adopted another approach by constructing a heterogeneous graph

containing both word and document nodes to classify text data, a novel innovation at the document

granularity. In this graph, the connections between words and documents are determined by word

frequency, while connections among words are based on their semantic associations. Using Graph

Convolutional Networks (GCNs) to process this structure and facilitating information transfer

between documents to learn embeddings for unlabeled words and documents, this strategy improved

performance by an average of 1.2% across multiple standard datasets, achieving an average accuracy

of 84.5%.

In sentence-level classification tasks, in 2019, Zhang and his team used the Dependency Tree (DT)

structure within sentences to construct text graphs, subsequently applying GNNs for sentence

classification. This method significantly enhanced the accuracy of the classification model by

effectively utilizing long-distance dependencies between words. Continuing in this research direction,

in 2020, Zhang and others constructed independent graph representations for each document and used

GNNs to learn representations of words within documents. This approach, emphasizing the capability

to generate embeddings for unknown words in documents, exhibited exceptional performance across

multiple standard datasets.

4.3. Classification Method Based on Transfer Learning Models

Transfer learning technology[9], by leveraging relevant knowledge, enhances the model's

performance on new tasks and reduces the dependency on labeled data. Especially in cross-domain

or multi-level text classification tasks, such as fake news detection and topic identification, transfer

learning has shown significant advantages, overcoming the limitations of traditional deep learning

models and has proven effective in various fields like sentiment analysis and computer vision.

In 2018, Howard and others proposed ULMFiT[10], an innovative fine-tuning method for universal

language models, which implemented transfer learning in natural language processing (NLP) tasks.

It is applicable to a variety of text classification tasks without the need for additional data support and

significantly reduced error rates in small sample data environments. In 2019, Banerjee and his team

introduced HTrans, a hierarchical transfer learning strategy for multi-label text classification

problems. By fine-tuning classifiers from top to bottom within a hierarchical structure, they

significantly improved classification performance. In the same year, Houlsby and others addressed

the issue of parameter efficiency when fine-tuning pre-trained models, introducing an efficient

adapter module strategy that requires tuning only a small number of parameters to achieve good

performance. In 2020, Raffel and others proposed a framework that unifies all text-based tasks into a

text-to-text format, further expanding the application of NLP transfer learning. In 2021, Cao and

others proposed a new fine-grained cross-domain sentiment classification deep transfer learning

mechanism to better utilize unlabeled data in the target domain. This approach uses a domain

adaptation model to minimize the feature distribution differences between the source and target

domains.

Transfer learning reduces the reliance on data and annotations in text classification, facing

challenges such as the complexity of cross-domain knowledge transfer, the assessment of cross-

domain transfer potential, and handling content privacy. Specifically, the context dependency of word

meanings may lead to negative transfer from a weakly related source domain to the target domain,

necessitating the development of new strategies to avoid such impacts.

4.4. Classification Method Based on Pre-trained Models

Pre-trained models[11], by learning general data characteristics on large datasets, provide a strong

starting point for specific natural language processing tasks. This approach allows downstream tasks

38

to fine-tune based on foundational knowledge, achieving high performance and reducing the need for

training data. The effectiveness of pre-trained models stems from their rich inherent general

information, leading to rapid convergence, low data dependency, outstanding performance, and

reduced risk of overfitting.

Pre-trained models learn general characteristics on large datasets, offering an optimized starting

point for specific tasks such as text classification. This strategy reduces the need for training data,

speeds up model convergence, improves performance, and lowers the risk of overfitting due to the

extensive information contained within.

Unsupervised learning techniques are widely applied in pre-trained models because they can be

trained on a large amount of unlabeled data. Self-supervised learning, a combination of unsupervised

and supervised methods, generates training signals from unlabeled data to facilitate learning. This

enables models to learn feature extraction without manual annotation, significantly reducing data

preparation costs. Self-supervised learning has proven effective in large-scale language models like

BERT[12] and GPT, advancing natural language processing technology.

Word2Vec[13], an early pre-trained language model, trained through unsupervised skip-gram and

continuous bag-of-words strategies, provides features for text classification. However, it produces

fixed word vectors, ignoring the polysemy of words, such as different meanings of "apple" in various

contexts, which may limit model performance. Therefore, Word2Vec generates a static word

embedding for "apple," which might restrict the model's capability in tasks like text classification.

To address the issue of capturing polysemy in models like Word2Vec, researchers introduced the

Masked Language Model (MLM), as used in BERT. MLM randomly masks words in the input,

training the model to predict these words based on context, allowing the model to learn context-

related word embeddings without manual annotation. This requires the model to utilize bidirectional

context, enhancing sensitivity to semantic changes and generalization capability.

When using BERT for text classification tasks, a special token [CLS] is added at the front of the

input sequence. This token has a specific meaning within BERT's architecture, used to generate an

embedding vector representing the entire input sequence for classification tasks. In the process of text

classification, analyzing the final embedding vector corresponding to the [CLS] token, and passing it

to a simple classifier (such as a softmax function), allows for the prediction of the entire text

sequence's category label.

𝑝(𝑦𝑖|ℎ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ[𝐶𝐿𝑆]) (5)

The MLM (Masked Language Model) training strategy has endowed BERT with powerful

language understanding capabilities. After completing pre-training, BERT can be fine-tuned to adapt

to a wide range of NLP tasks, including text classification, named entity recognition, and question-

answering systems. In these tasks, BERT's bidirectional context comprehension significantly

enhances model performance.

For instance, in sentiment analysis tasks, the rich contextual information learned through MLM

allows BERT to understand the sentiment in texts more accurately. In question-answering systems,

BERT's ability to understand bidirectional context enables it to more precisely locate the position of

answers.

The introduction of the MLM training method for the BERT model has not only opened a new

direction for the development of pre-trained language models but has also greatly advanced the field

of NLP. Its ability to capture complex bidirectional contextual information is key to its outstanding

performance across many tasks. However, the BERT model also faces some challenges, including the

significant demand for computational resources and limitations in processing long texts. Despite these

challenges, the successful application of BERT and its variants in the NLP field undoubtedly

demonstrates the immense potential and value of deep learning-based pre-trained models.

39

5. Comparison and Experimental Analysis of Text Classification Algorithms

5.1. Evaluation Methods

Evaluating the strengths and weaknesses of classification algorithms often involves multiple

aspects, including accuracy, generalization ability, computational efficiency, and model

interpretability. To comprehensively assess classification algorithms, researchers use various

evaluation metrics and methods. Here are some of the most commonly used evaluation methods:

Accuracy is one of the most intuitive evaluation metrics, defined as the proportion of correctly

classified samples to the total number of samples. For binary classification problems, accuracy can

be represented as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6)

where TP (True Positives) and TN (True Negatives) represent the number of correctly classified

positive and negative classes, respectively, while FP (False Positives) and FN (False Negatives)

represent the number of samples incorrectly classified as positive and negative classes, respectively.

Precision focuses on the proportion of samples predicted as positive by the model that are actually

positive; recall, on the other hand, focuses on the proportion of all actual positive samples that are

correctly predicted as positive by the model. These two metrics are particularly useful in cases of data

imbalance, with formulas as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8)

The F1 score is the harmonic mean of precision and recall, attempting to strike a balance between

these two metrics. The formula for the F1 score is:

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (9)

The F1 score is particularly applicable in scenarios where precision and recall are equally

important.

5.2. Performance Comparison

Across several commonly used datasets:

IMDb Movie Review Dataset: Used for sentiment analysis, it contains a large number of movie

reviews with their sentiment labels (positive or negative).

20 Newsgroups: A news group message dataset containing documents from 20 different topics,

suitable for topic classification tasks.

Reuters-21578: A news wire dataset frequently used for news article topic classification.

AG's News Corpus: A news article dataset for news classification, containing multiple categories.

Different text classification models have shown their respective strengths and limitations:

FNN: While performing well on some simple text classification tasks, FNNs often fail to capture

long-distance dependencies in text, limiting their application in complex tasks.

LSTM and RNN: Due to their recurrent structure, these two models can handle sequential data

well, especially in capturing long-term dependencies, superior to FNN. However, LSTMs and RNNs

may encounter gradient vanishing or exploding problems when processing very long sequences.

CNN: By leveraging local relevance, CNNs excel at extracting key local features in text,

particularly suitable for tasks like sentiment analysis that require capturing local text patterns.

40

word2vec: As a pre-trained word embedding method, word2vec can effectively capture semantic

relationships between words, but its performance largely depends on the capability of the downstream

model.

BERT: As a Transformer-based pre-trained model, BERT captures rich linguistic features through

pre-training and achieves state-of-the-art (SOTA) performance in multiple text classification tasks by

fine-tuning. Its success is largely due to its deep bidirectional structure, enabling a comprehensive

understanding of language context.

Experimental results show that models based on deep learning (such as CNN, LSTM, BERT)

typically outperform traditional machine learning models (such as FNN based on word2vec) in text

classification tasks. Among them, BERT, due to its powerful language understanding ability, performs

exceptionally well on datasets with complex semantic relationships. However, the performance of

deep learning models often relies on a significant amount of training data and computational resources.

The performance differences between algorithms are primarily determined by their architectural

features: for example, CNNs excel at capturing local features, LSTMs and RNNs are better at

capturing long-term dependencies, and BERT's bidirectional Transformer structure enables it to

thoroughly understand text context. Choosing which classification model to use depends on the

specific circumstances and needs.

Overall, the main advancements in the text classification field currently focus on the integrated

use of deep learning technology and pre-trained language models. By fine-tuning pre-trained models

or designing optimized input prompts for specific tasks, researchers can significantly improve model

performance across various application scenarios. With the continued progress of these technologies,

the text classification field is expected to experience rapid development. This article provides

valuable insights and guidance for the research community and practitioners by analyzing the

performance of various text classification models on different datasets. These research findings have

practical value in selecting, designing, and optimizing text classification models, contributing to the

further development and innovation of text classification technology.

6. Future Directions and Challenges

The text classification field faces challenges with technological advancements and data growth,

such as the complexity of processing unstructured text, understanding the implied meanings and

semantics, and long-distance dependencies. Future directions include multimodal classification

integrating information beyond text, cross-lingual classification breaking language barriers, and

enhancing performance with deep learning technologies like pre-trained models BERT and GPT.

Challenges involve processing unstructured text, understanding the complexity of natural language,

adapting models to new vocabulary, and dealing with multimodal and cross-lingual text processing.

Deep learning offers new avenues for complex text classification, indicating that through

technological innovation and optimization strategies, text classification will achieve more precise and

efficient processing capabilities.

7. Conclusion

This article reviews the evolution of text classification algorithms, from rule-based and statistical

methods to deep learning models such as CNN, RNN, LSTM, BERT, and GPT, highlighting their

contributions to improving classification accuracy and efficiency. Text classification technology has

played a key role in various domains, including sentiment analysis and spam detection, aiding

businesses in extracting valuable information. Despite facing challenges such as processing

unstructured text and understanding complex semantics, future research will focus on innovations in

model architecture, interpretability, cross-lingual capabilities, and multimodal classification methods.

41

The aim is to achieve more accurate, transparent, and widely applicable text classification solutions,

continuing to advance the field of natural language processing.

References

[1] Sebastiani F. Machine learning in automated text categorization. ACM Computing Surveys (CSUR), 2002, 34(1):1-

47.

[2] Maron M E. Automatic indexing: an experimental inquiry. Journal of the ACM (JACM), 1961, 8(3):404-417.

[3] Joachims T. Text categorization with support vector machines: Learning with many relevant features//Lecture Notes

in Computer Science: volume 1398 Machine Learning: ECML-98, 10th European Conference on Machine Learning,

Chemnitz, Germany, 1998: 137- 142.

[4] Unanue I J, Haffari G, Piccardi M. T3l: Translate-and-test transfer learning for cross-lingual text classification.

arXiv preprint arXiv:2306.04996, 2023.

[5] Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for efficient text classification//Proceedings of the 15th

Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, Valencia, Spain,

Volume 2: Short Papers, 2017: 427- 431.

[6] Mikolov T, Karafiát M, Burget L, et al. Recurrent neural network based language model//INTERSPEECH 2010, 11th

Annual Conference of the International Speech Communication Association, Makuhari, Japan, 2010: 1045-1048.

[7] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8):1735-1780.

[8] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model. IEEE Transactions on Neural Networks,

2008, 20(1):61-80.

[9] Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning. Proceedings of the IEEE, 2020,

109(1):43-76.

[10] Howard J, Ruder S. Universal language model fine-tuning for text classification//Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, Volume 1: Long Papers,

2018: 328-339.

[11] Wu T, Caccia M, Li Z, et al. Pretrained language model in continual learning: A comparative study//The Tenth

International Conference on Learning Representations, ICLR 2022, Virtual Event, 2022.

[12] Devlin J, Chang M, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language

understanding//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, USA, Volume 1 (Long and Short Papers),

2019: 4171-4186.

[13] Ikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality.

Advances in Neural Information Processing Systems, 2013, 26.

42

