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Abstract: For illustrating the application of test technology theory in engineering practice, a 

multi-sensor data fusion fault diagnosis method is proposed, which uses data from flow, 

pressure and acceleration sensors and combines with deep learning to fuse multiple signals. 

Firstly, different failure modes of a certain device are simulated, and the original time series 

of different sensors are structured using long short-term memory. Then, the data processed 

by different fault modes are input into the convolutional neural network for recognition. 

Finally, the output of multiple networks is fused to achieve more comprehensive and accurate 

fault detection. This case illustrates the function of testing basic theory in solving practical 

engineering and the method of practical application. 

1. Introduction 

With the advent of Industry 4.0, industrial systems tend to be digital and intelligent. Industrial 

system monitoring aims to ensure the reliability, efficiency, economy and safety of industrial systems 

through the use of multi-sensor technology, deep learning methods. Among them, multi-sensor 

technology is widely used in industrial automation and control systems. Because multi-sensor signals 

can provide more sources of fault information, industrial monitoring using multi-sensor signals can 

obtain more accurate and reliable results than using only single sensor signals. Wang et al. propose a 

graph Transformer called DVGT former for predicting remaining useful life, which adequately learns 

potential degradation patterns by capturing complex correlations in multi-sensor signals [1]. Liang et 

al. proposed a method based on multi-sensor signal multi-scale correlation analysis for fault detection 

of high-speed and high-power diesel engines under complex and variable working conditions [2]. 

Guo et al. used sample components from multiple current sensors to construct cyclic spectral 

covariance matrix (ICSCM) to detect rotating machinery faults under different working conditions, 

and realized multi-sensor data fusion for rotating machinery fault detection [3]. Wang et al. proposed 

and established an action recognition model architecture based on ResNet+LSTM+D-S evidence 

theory [4]. In view of the application of motion recognition in industry, the characteristics of different 

data are fully considered to maximize the multi-sensor data value.  

To sum up, multi-sensor signal processing is an important application in modern engineering 

technology, and its core lies in the use of multiple sensors to collect data and process these data 

through algorithms to achieve more accurate and reliable information fusion and decision support. In 
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addition, multi-sensor data fusion can extract richer features and patterns, contributing to more 

efficient fault detection. By considering the correlations and interactions between the measurements 

of different sensors, hidden relationships can be discovered to derive more information-rich features 

for the fault diagnosis algorithm or model [5]. In the above applications, although samples under all 

conditions are not required, there are certain requirements for fault data. Similarly, due to complex 

temporal and spatial dependencies in multi-sensor signals, fusing multi-sensor information to build 

accurate and robust deep learn-based fault diagnosis models remains a challenge. In this paper, several 

data fusion methods are studied, and a robust model with strong generalization ability is designed. 

2. Multi-sensor Signals Processing  

2.1 Test System and Signal Acquisition 

In this study, we consider data derived from flow, pressure and acceleration sensors installed on 

specific equipment. Because the mechanical equipment is often in a complex, noisy, and closed 

operating environment, the collected data tends to contain more noise, as well as the sampling rates 

and amplitudes of these sensors vary. In order to reduce the effect of noise as much as possible, 

wavelet noise reduction technology could be used to process the signal. In addition, this study uses a 

long short-term memory network (LSTM) to synchronize data from different time series to ensure 

that all data reflect uniform point-in-time information since the data collected by different sensors are 

often not synchronized in time. Before input to the LSTM network, the data must be standardized to 

improve the processing performance of the model. After data synchronization, the signal is processed 

into a two-dimensional image through data dimension conversion and input into the convolutional 

neural network (CNN) for fault identification and analysis. At the decision-making level, this study 

integrates information from various sensors, each model makes its own judgment, and then 

synthesizes these judgments through a set of decision strategies to output the final decision result. 

The flowchart of multi-sensor signals processing is shown in Fig 1. 
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Figure 1: The flowchart of multi-sensor signals processing. 

60



2.2 Processing and Analysis of Signal 

Wavelet denoising is a signal denoising method that is particularly suitable for dealing with non-

stationary signals, by splitting the signal into different frequency groups and screening for noise 

removal. During the signal sampling process, the original signal x(t) is decomposed into different 

frequency levels by discrete wavelet transform (DWT), such as formula 1. 

𝑊𝑗,𝑘 = ∑ 𝑥(𝑡) ∙ 𝜓𝑗,𝑘(𝑡)𝑡                             (1) 

Where 𝜓𝑗,𝑘(𝑡) is the wavelet function after scaling and shifting, j is the level of decomposition, 

k is the location of the layer. After the wavelet transform, the wavelet coefficients of each layer 𝑊𝑗,𝑘 

are treated with soft thresholds (as in formula 2) to remove noise. 

𝑊̂𝑗,𝑘 = 𝑠𝑖𝑔𝑛(𝑊𝑗,𝑘) ∙ max⁡(0, |𝑊𝑗,𝑘| − λ)                    (2) 

Where 𝜆 is threshold value. It needs to be selected based on signal characteristics and noise levels. 

Inverse discrete wavelet transform (IDWT) is performed on the wavelet coefficients 𝑊̂𝑗,𝑘 treated 

with threshold values (as shown in formula 3) to reconstruct the signal. 

𝑥̂(𝑡) = ∑ 𝑊̂𝑗,𝑘 ∙ 𝜓𝑗,𝑘(𝑡)𝑗,𝑘                               (3) 

The signal after noise reduction 𝑥̂(𝑡) is obtained through the above process. Fig. 2 shows the 

comparison between the original signal and the signal after noise reduction. 

 

Figure 2: Original signal and noise reduction signal. 

Synchronization of multi-sensor data signals refers to a method during data processing that aims 

to achieve the time alignment of data streams from different sensors. This technology ensures that all 

sensor output data reflects the same time point or event, thereby improving the accuracy and 

efficiency of data analysis and subsequent processing. Data synchronization can be achieved through 

both hardware and software. The latter often depends on algorithms to adjust data with different 

timestamps to ensure time consistency. In this study, LSTM is used for time alignment of multi-sensor 
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data. In the field of time series data processing, LSTM shows significant advantages in processing 

series data with complex temporal properties due to its efficient processing and memory of long-term 

dependencies. During the signal synchronization process, the de-noised data must be standardized 

(see Formula 4) before it can be effectively input into the LSTM model for further analysis. 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 =
𝑥−min⁡(𝑥)

max(𝑥)−min(𝑥)
                          (4) 

For missing data points, it can fill them with polynomial interpolation methods (as in Formula 5). 

𝑃(𝑡) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛                     (5) 

If we have n+1 data points (x0, y0), (x1, y1), …, (xn, yn), coefficient a0, a1, …, an are composed of 

interpolation conditions P(xi)=yi (i=0, 1, …, n). The data after noise reduction, standardization and 

interpolation are input into the LSTM model for time feature extraction and alignment (as shown in 

formula 6).  

ℎ𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) ∗ 𝑡𝑎𝑛ℎ(𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶))      (6) 

In time step t, the input is xt. The hidden state of the previous time step is ht−1, the cell state of the 

previous time step is Ct−1. The forgetting gate ft determines how much of the previous cell state will 

be retained, and the input gate it determines how much of the new information will be stored in the 

cell state. The output gate it determines which part of the current cell will be output to the current 

hidden state ht. b represents the offset term, and * represents the element-by-element multiplication. 

Formula 6 simplifies the actual operation. In the calculation process, LSTM also needs to learn and 

adjust various parameters, as well as the application of activation functions, to ensure that the model 

can effectively process and remember long-term and short-term messages. 

Data dimension transformation is a data processing method that is widely used to analyze time 

series data using convolutional neural networks. This method can help to reveal the patterns and 

features in time series data and improve the accuracy of time series classification. There are two main 

methods to convert one-dimensional time series data into two-dimensional images. The first is time-

frequency analysis method, which takes time series as signal analysis object and uses time-frequency 

analysis method to analyze and solve its time-frequency graph, mainly including short-time Fourier 

transform, wavelet transform, Hilbert-Yellow transform and so on. The second is the image coding 

method, which encodes the time series data by other methods, and then maps the encoded data to the 

two-dimensional image. There are mainly Markov transition field, recursive graph, graph difference 

field, relative position matrix, Gram Angle field and so on. In this paper, Markov transition field is 

used to construct a state transition probability matrix based on time series data. First, the time series 

data is discretized into a finite state. Set time series X= {x1, x2, …, xn}, the discretized sequence is 

S= {s1, s2, …, sn}. si  is the discrete state of xi. Then calculate the state transition matrix P: 

𝑃𝑖𝑗 =
𝑓𝑟𝑒(𝑠𝑘=𝛼⁡𝑎𝑛𝑑⁡𝑠𝑘+1=𝛽)

𝑓𝑟𝑒(𝑠𝑘=𝛼)
                            (7) 

where Pij represents the probability of moving from state α to state β. This is achieved by 

calculating the frequency of the transition from state α to state β, and then dividing by the total 

frequency of the occurrence of state α. Finally, the state sequence S and transition probability matrix 

P are used to construct the Markov transition field (MTF) matrix M. For each element in the Markov 

transition field (MTF) Mkl, its value is determined by the transfer probabilities of Sk and Sl (Formula 

8): 

𝑀𝑘𝑙 = 𝑃𝑠𝑘𝑠𝑙⁡                                  (8) 

where M is an n×n matrix (See Fig.3),n is the length of the time series, and Mkl represents the 

62



probability of the transition from the state at position k to the state at position l in the time series.  

Multi-sensor data fusion can be divided into data level fusion, feature level fusion and decision 

level fusion. Data-level fusion directly merges data from different sensors at the data level; feature-

level fusion merges features extracted from each sensor; decision-level fusion merges information 

from each sensor at the decision level, and fuses the independent judgment of each sensor to make 

decision results through decision-making strategies. 

 

Figure 3: Markov transition field. 

Dempster-Shafer evidence theory (D-S) is a mathematical framework for reasoning and decision 

making under conditions of uncertainty. By expressing evidence as a probability distribution, it can 

deal with incomplete, conflicting and uncertain information. The core of D-S theory can be simplified 

by the following two main formulas: 

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵⊆𝐴                               (9) 

Where the trust function Bel(A) is used to quantify the extent to which the evidence supports set 

A, and m (B) is a basic probability assignment, representing the probability directly assigned to set 

B. When there are two independent sources of evidence, m1 and m2, about the same proposition, 

their trust functions can be merged by Dempster's combination rule (formula 9): 

𝑚12(𝐴) =
1

1−𝐾
∑ 𝑚1(𝐵) ⋅ 𝑚2(𝐶)𝐵∩𝐶=𝐴                       (10) 

K is a conflict factor that measures inconsistencies between two sets of evidence sources B and C, 

expressed as: 

𝐾 = ∑ 𝑚1(𝐵) ⋅ 𝑚2(𝐶)𝐵∩𝐶=∅                            (11) 

This combination rule is used to update trust, combine information from different sources, and 

finally provide a comprehensive trust assessment that considers all available evidence. 

In summary, multi-sensor signals have become a very critical factor in industrial fault monitoring, 

and integrating data from multiple sensors makes the system more robust and reliable in 

distinguishing between different fault classes and accurately classifying faults. Multi-source data can 

be obtained by sensors in real time. After processing and analysis, information about the fault source 

can be mined from the data. The process of signal processing includes the steps of wavelet denoising, 

interpolation, LSTM signal synchronization, dimension conversion based on Markov transition field 

and decision fusion. Multi-sensor data fusion improves fault classification performance by reducing 
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noise effects and minimizing false positives through wavelet noise reduction. By using standardized 

signal processing and polynomial interpolation methods to fill in the missing data, we further improve 

the consistency and integrity of data processing. Then, the non-stationary signals are effectively 

processed by LSTM. The key time features are extracted from the complex time series data, and the 

time alignment of multi-sensor signals is realized. In addition, the data dimension conversion is 

introduced to convert one-dimensional time series data into two-dimensional images, thus helping us 

to extract temporal and spatial features from multi-sensor signals. This step significantly improves 

the ability to recognize data patterns, and maximizes the use of each signal to help us achieve more 

accurate and robust fault detection. Finally, in terms of multi-sensor data fusion, we discuss the 

strategies of data-level fusion, feature-level fusion and decision-level fusion, and use D-S theory to 

deal with the uncertainty and conflict of evidence to ensure the accuracy and reliability of the fusion 

process. 

3. Conclusion 

In this study, we deeply explore the application of multi-sensor signal processing in industrial fault 

monitoring, and confirm its important value in improving the accuracy of fault detection and system 

reliability. By integrating data from multiple types of sensors, such as flow, pressure and acceleration, 

we are not only able to capture a more complete picture of system operation, but also effectively 

identify and predict potential failures through advanced signal processing technology. This study 

emphasizes the practical significance of implementing multi-sensor data fusion in industrial system 

monitoring, and provides scientific basis and technical support for intelligent manufacturing under 

the background of Industry 4.0. Future research can be deepened in the following aspects: 

(1) Algorithm optimization: Optimize data processing and analysis algorithms to adapt to diverse 

industrial environments and more complex failure modes. 

(2) Data fusion method: It is not limited to a single data fusion, and a variety of data fusion methods 

can be used for optimization. 

(3) Application: Explore the application of the technologies and methods in this study to other 

fields, such as automotive, medical and robotics, and use more kinds of data to achieve technology 

integration and innovation. 
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