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Abstract: Mining area is very large, and the road conditions are also very complex. It is 

very difficult to familiarize oneself with the environment of the mine by driving. Based on 

3D LiDAR technology, this research explores a driving boundary detection method for 

driverless vehicles in mines based on point cloud data. Through the use of 3D LiDAR 

sensors to obtain point cloud data of the environment, and the use of object shape 

recognition, high-precision ranging, multi-angle observation and multi-sensor fusion and 

other technologies, the accurate detection of mine environmental boundaries is realized. 

The experimental results show that the boundary detection method of mine driverless 

vehicles based on 3D LiDAR has high accuracy and real-time. Using the point cloud data 

obtained by the 3D LiDAR sensor, it can quickly capture and represent the shape and 

contour of objects in the mine environment, and realize accurate boundary detection. 

1. Introduction 

Applying autonomous vehicles to mines can improve work efficiency. This article adopts a 

mining autonomous vehicle driving boundary detection method based on 3D LiDAR technology. Its 

sensors can obtain point cloud data of the environment at high frame rates and fast data acquisition 

speeds, thereby achieving accurate detection of mining environmental boundaries. Through 

techniques such as object shape recognition, high-precision ranging, multi angle observation, and 

multi-sensor fusion, the method proposed in this paper can quickly capture and represent the shape 

and contour of objects in the mining environment, achieving accurate detection of boundaries. 

This article first introduces the research background and current situation of 3D LiDAR based 

boundary detection for unmanned mining vehicles, and elaborates in detail on the 3D LiDAR based 

boundary detection method used in this article, including data acquisition, real-time processing, and 

boundary detection algorithms. Next, this article presents experimental results and analysis, 

verifying the effectiveness and reliability of the proposed method. Finally, the research findings 

were summarized and future research directions were discussed. 
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2. Related Work 

Many people have conducted research on unmanned driving detection, among which Tian 

Guohong proposed a method for detecting obstacles in front of unmanned vehicles in uncertain 

environments, using LiDAR to obtain LiDAR images of the vehicle's driving process. By using 

bilateral filtering methods to complete image denoising, a road boundary model is established based 

on the searched road boundary points, and obstacle features are extracted to establish an obstacle 

model. The classification results of spatiotemporal feature coefficients can be used to identify 

obstacle types and achieve obstacle detection [1]. Guo Yongcun proposed a multi-target detection 

model for underground electric locomotives. This model is improved based on the instance 

segmentation algorithm by embedding a compression excitation module in the residual block of the 

backbone feature extraction network ResNet, learning the importance and interrelationships of each 

channel, and enhancing the network's ability to select and capture features [2]. Meng Dejiang 

proposed the Grid Kalman Road Slope Real time Detection (GKSRD) method. This method takes 

three-dimensional LiDAR point clouds and INS (Inertial Navigation System) elevation angle 

information as inputs, and uses two-dimensional raster maps, iterative optimization algorithms for 

rectangular regions of interest, and Kalman filters [3]. Hu Qingsong systematically reviewed the 

research status of unmanned driving environment perception technology in mines. He pointed out 

that the special environment of the tunnel can lead to varying degrees of performance degradation 

of the mine vehicle mounted perception equipment, and summarized the advantages and 

disadvantages of various vehicle mounted perception equipment [4]. Qin Peilin proposed a 3D 

target detection method for unmanned trackless rubber wheeled vehicles that integrate images and 

radar point clouds. For the pre-processing of the obtained trackless rubber tire vehicle driving 

environment data, the global histogram equalization method can be used to improve the brightness 

of RGB images and reduce the impact of uneven underground lighting [5]. Edwards D J aimed to 

provide a systematic review of existing literature on the application of autonomous driving 

technology in the field of civil engineering, and to analyze in depth the limitations of 

comprehensive adoption of related barriers [6]. Bissell D called on sociologists to provide 

much-needed critical voices for institutions and public debate on the development of autonomous 

vehicle [7]. Karmakar G proposed two deep learning based models to measure the credibility of 

autonomous vehicles and their main onboard unit components [8]. Kabzan J applied an algorithm 

and system architecture for autonomous racing, integrating perception, estimation, and control into 

a high-performance autonomous driving racing car [9]. Engholm A believed that road freight is the 

first transportation sector where autonomous vehicles can have a significant impact [10]. These 

studies provide assistance for the algorithm implementation in this article, which can be based on 

3D LiDAR technology to design unmanned mining vehicles. 

3. Method 

3.1 Collection of Mine Road Surface Data 

3D LiDAR is a sensor technology used to obtain three-dimensional spatial information of the 

surrounding environment. It achieves spatial perception and distance measurement by emitting a 

laser beam and measuring the time and intensity of the laser beam's return [11-12]. Its sensors can 

be installed on mining transportation vehicles and fixed in appropriate positions, while multiple 

upright poles can be erected with a height of 10m. Multiple mining vehicles equipped with radar 

can travel back and forth, arranged with 3D LiDAR on upright poles, to ensure that sensors can 

cover the required road surface area. The radar can emit laser beams and receive their returned 

signals, forming point cloud data [13-14]. The obtained point cloud data contains noise and 
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incomplete parts, so data processing and registration are required, including noise removal, filtering, 

point cloud registration, and other steps, to obtain accurate road surface point cloud data. The 

processed point cloud data can be used for road segmentation and extraction operations, and 

algorithms such as ground estimation and plane fitting can be used to separate the road surface point 

cloud from the entire point cloud data. Table 1 shows a collection of mining road surface data: 

Table 1: Road Surface Data 

Location X Coordinate Y Coordinate Z Coordinate Depth Speed 

1 10.25 15.78 6.32 2.1 25 

2 8.97 19.42 5.85 3.2 18 

3 12.15 13.67 7.81 1.8 22 

4 9.62 17.23 6.95 2.5 20 

5 11.78 14.92 6.07 2.9 19 

3.2 Point Cloud Segmentation 

Point cloud segmentation based on region growth can be used to divide point cloud data into 

different subsets or regions. This method includes steps such as data preprocessing, ground 

estimation, feature calculation, seed point selection, region growth, and post-processing. The 

original point cloud can be preprocessed, outliers removed, filtered and sampled, and ground 

estimation algorithms can be used to fit the ground plane model. Ground points can be separated 

from non-ground points [15-16]. Feature calculations can be performed on non-ground point clouds, 

such as normal vectors, curvature, and color. By selecting one or more seed points as the starting 

point for region growth, it can be manually or automatically selected. Starting from the seed point, 

the region growing algorithm is used to gradually add adjacent points to the same region, and the 

conditions can be defined based on the geometric or attribute similarity between the points. The 

generated segmentation results can be post-processed to remove noise points, fill segmentation gaps, 

merge adjacent regions, etc. The final output identifies the point cloud segmentation results for 

different regions. This point cloud segmentation method based on region growth can be applied to 

fields such as unmanned mining, providing accurate road information and environmental perception 

[17-18]. 

3.3 Road Edge Construction 

This article uses collected data for feature extraction to identify and segment road edges. For 

point cloud data, features such as point height, curvature, and normal vectors are used to locate road 

edges. By setting a height threshold, points in the point cloud that exceed a certain range in height 

can be filtered out, as the roadside is usually higher than the road surface by a certain degree. The 

curvature of each point in the point cloud can be calculated using the rate of change of surface 

normals, and points with larger curvature often correspond to the position of the roadside. A curve 

fitting algorithm is used to fit the geometry of the outer edge. In order to cope with changes in the 

mine environment, roadside information needs to be updated and maintained, so sensors need to be 

used regularly to collect data on mine roads to obtain the latest point cloud data or image data 

[19-20]. The paper compared and matched the collected new data with the existing kerb model, 
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identified the changing kerb area, and dynamically update the kerb model based on the detected 

changes, and used the new data for feature extraction and modeling to maintain the accuracy and 

real-time of kerb information. Through feature extraction, kerb modeling, and kerb update and 

maintenance, the kerb information of mine roads can be accurately constructed and maintained, and 

reliable navigation and safety support can be provided for unmanned vehicles.  

3.4 Boundary Detection Algorithm 

Gaussian smoothing of the image returned by the 3D LiDAR reduces the noise in the image and 

makes subsequent edge detection more accurate. It can use Canny edge detection algorithm to 

detect the returned image, calculate the gradient information on the smoothed image, use Sobel 

operator or other gradient operator to calculate the horizontal and vertical gradient values of each 

pixel in the image, and then calculate the gradient amplitude and direction based on these gradient 

values. The gradient amplitude represents the intensity of the edge, while the gradient direction 

represents the direction of the edge. By comparing the pixels in the gradient direction, the pixels 

with the largest gradient value are retained. This step helps to refine the edges and make them more 

delicate. According to the set high and low thresholds, the pixels are divided into three categories: 

strong edge, weak edge, and non-edge. A high threshold value is used to accept strong edge pixels, a 

low threshold value are used to exclude non-edge pixels, and the pixels in between are marked as 

weak edges. This step helps to filter out noise and weak edges, improve the accuracy of edge 

detection, and form a closed edge contour by connecting strong edge pixels and weak edge pixels 

connected to them.  

4. Results and Discussion  

The driving boundary detection system can be combined with unmanned vehicles for 

experimental testing at mine A. The experimental control is unmanned vehicles without a boundary 

detection system. The experimental group and control group each have 15 vehicles traveling back 

and forth in the mine. Their boundary detection accuracy, false detection rate, and delay time can be 

compared. In the experiment, 3D LiDAR sensors can be calibrated, including calibration of internal 

and external parameters, to reduce data acquisition errors. 

4.1 Boundary Detection Accuracy 

Accurate boundary detection can help autonomous vehicles sense the position and shape of the 

road. If the accuracy of boundary detection is low, it may lead to vehicles misidentifying road 

boundaries, resulting in deviation from the road or collision with obstacles. Boundary detection has 

high accuracy and can provide accurate boundary information, helping vehicles make correct 

driving decisions and improving driving safety. Figure 1 shows the accuracy comparison: 

 

Figure 1: Boundary detection accuracy 
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In the accuracy test, the experimental group of 15 vehicles had an accuracy of 5-12cm, while the 

control group of 15 vehicles had an accuracy of 10-20cm. It can be clearly seen that the 

experimental group in this article has higher accuracy, with the highest accuracy performance 

reaching 5cm. This is because the 3D LiDAR sensor can obtain point cloud data of the environment 

at high resolution. It generates high-density and high-resolution point cloud maps by emitting a 

laser beam and measuring the time and intensity information of the returned laser points. This high 

resolution enables 3D LiDAR to accurately capture and represent subtle features and boundaries in 

the environment. 

4.2 Misdetection Rate 

The false detection rate refers to the frequency at which an algorithm incorrectly identifies non 

boundary areas or irrelevant objects as boundaries. There may be many interfering objects, noise, or 

other non-boundary features in the mining environment, and a high false alarm rate may lead to 

unmanned vehicles mistakenly identifying these areas as boundaries, thereby affecting driving 

safety and efficiency. Figure 2 shows the comparison results: 

 

Figure 2: Misdetection rate 

The level of false detection rate is important for the safety of autonomous vehicles. In the test, 

the maximum false detection rate of the experimental group in this article is 1.5%, and the 

minimum is 1%. The maximum false detection rate in the control group is 5%, and the minimum is 

3.5%. 3D LiDAR can observe objects in 360 degrees and collect information from multiple sides. 

By integrating observation data from multiple angles, boundary detection algorithms can better 

understand the shape and boundaries of objects, reducing the possibility of false positives. 

4.3 Delay Time 

Delay time refers to the time required from the appearance or change of a boundary to the 

detection and processing of the change by the boundary detection system. The shorter the delay 

time of the boundary detection system, the faster the system can respond to environmental changes 

and provide real-time boundary detection results. A lower delay time can improve the real-time 

performance of autonomous vehicles, enabling them to perceive and respond to changes in 

boundaries in a timely manner, thereby improving driving safety and reliability. Figure 3 shows the 

comparison results: 
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Figure 3: Delay time 

The delay time test results show that the delay time of the experimental group in this article is 

between 4-12ms, which is a relatively low delay. The delay time of the control group is between 

26-35ms, which is relatively high compared to the experimental group and prone to accidents. 3D 

LiDAR sensors are typically combined with high-performance processors and algorithms to process 

large amounts of point cloud data in real-time. This enables boundary detection algorithms to 

quickly analyze and interpret point cloud data, thereby quickly detecting changes in boundaries. 

The ability to process real-time data enables autonomous vehicles to respond to environmental 

changes in a short period of time, reducing the latency of algorithm processing. 

5. Conclusions 

After conducting experimental tests on three indicators, it can be concluded that 3D LiDAR can 

accurately detect the boundaries of mining environments and respond to changes in boundaries in a 

short period of time. The low delay time enables the boundary detection system to quickly obtain 

the latest environmental information and take timely obstacle avoidance measures, improving the 

safety and stability of autonomous vehicles. The mining autonomous vehicle driving boundary 

detection technology based on 3D LiDAR has broad application prospects, which can be applied in 

the mining industry to improve production efficiency and safety. However, in order to further 

improve the accuracy and reliability of boundary detection, algorithms and hardware technologies 

still need to be continuously improved to achieve higher levels of environmental awareness and 

boundary detection capabilities. 
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