
 

 

Linear Congruence and Reduction on the Learning with 

Errors Problem 

Lanxuan Xia 

St. Mark's School, 25 Marlboro Road Southborough, Massachusetts, United States 

lauraxia8@gmail.com 

Keywords: Linear Diophantine equations, linear congruence, LU decomposition, LWE, 

lattice-based cryptography, matrices 

Abstract: We propose an algorithm to solve general linear Diophantine equations and an 

algorithm to solve linear congruence problems efficiently using LU decomposition, which 

means unsafety of cryptography systems based on linear congruence equations. Thus, we 

focus on the generalization of the argument for a specific reduction of the Learning with 

Error (LWE) problem established in a previous work ([BLP13]) so that LWE can 

accommodate for more general choices of matrices. More specifically, we relaxed [BLP13]'s 

constraint on the choice of the identity matrix to general diagonal matrices. Two examples 

are presented here to show the validity of our results further. 

1. Introduction 

Many classic cryptography systems rely on the hardness to solve certain problems, such as large 

integer factorization, discrete logarithm, and elliptic curves to ensure information security. One of 

such problems of topic in our paper is solving the linear congruence equation 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑚) for 

large values of 𝑚. Linear congruence serves as the basis of many cryptographic algorithms, including 

the Rivest Shamir Adleman (RSA) encryption and decryption algorithms.  

As a result, it is of interest for mathematicians to develop efficient algorithms for solving linear 

congruence. Some existing methods of solving linear congruence include root testing on the residue 

classes 𝑚𝑜𝑑𝑚 , finding 𝑎−1(𝑚𝑜𝑑𝑚) , and converting the equation to the corresponding linear 

Diophantine equation 𝑎𝑥 + 𝑐𝑚 = 𝑏 and then applying the Euclidean Algorithm. In 1980 John R. 

Silvester also describes a novel method of combining matrix elementary row-operation with solutions 

to linear congruence equations.[1] 

However, all these methods fell short when it comes to a system of linear congruence equations, 

namely those 𝐴𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑚) with 𝐴 being a 𝑛-dimensional full rank matrix, having significantly 

large values of 𝑛 and 𝑚. For these cases, we propose an algorithm that utilizes LU decomposition, 

taking advantage of the known efficient algorithms for calculating LU decomposition.   

With more and more efficient algorithms for computing linear congruence, it is essential for 

mathematicians to devise new problems with a hardness level stronger than the current problems. 

Following the introduction of quantum computers, lattice-based cryptography has become 

increasingly important for post-quantum cryptography. Different from the classic encryption methods 
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such as RSA and Diffie-Hellman, lattice-based cryptography is currently believed to be theoretically 

not breakable by quantum computers—that is, under the assumption that specific computational 

lattice problems have no polynomial time algorithm solutions.  

In our paper, we will focus on a fundamental problem which most lattice-based cryptographic 

systems are based upon: the learning with error (LWE) problem. Two distributions are concerned in 

the problem: 

((𝑎𝑖, < 𝑎𝑖, 𝑠 > +𝑒𝑖𝑚𝑜𝑑𝑞))𝑖𝑎𝑛𝑑((𝑎𝑖, 𝑢𝑖))𝑖 

where the 𝑠 and 𝑎𝑖 are chosen uniformly at random from ℤ𝑞
𝑛
, 𝑢𝑖uniformly at random fromℤ𝑞, and 

𝑒𝑖 ∈ ℤ from an error distribution which is typically a discrete Gaussian distribution. The decision 

variant of LWE aims to distinguish between the two distributions, while the search version aims to 

find the secret 𝑠.  

Regev’s groundbreaking work in 2005 shows a reduction from lattice problems such as finding 

relatively short vectors in general lattices to LWE, proving that the latter is a hard problem.[2] More 

specifically, it turns out a solving algorithm for 𝑛-dimensional LWE implies an efficient quantum 

algorithm to find short enough vectors in n-dimensional lattices.  

However, since Regev’s work only suggests the existence of an efficient quantum algorithm from 

any, even non-quantum, algorithms for LWE, this reduction is not the end point of such reductions. 

Other works thus succeed Regev’s work in an attempt to find a better, namely classical (non-quantum) 

reductions. C. Perkert’s 2005 work shows exponential modulus LWE can be classically reduced to 

standard lattice problems.[3] Z. Brakerski et al.’s 2013 work establishes a classical reduction on 

polynomial modulus LWE.[4] More importantly, it shows that the existence of an efficient classical 

algorithm for LWE implies an efficient algorithm for worst-case standard lattice problems.  

In short, many reductions upon different versions of LWE have been established thus far, all with 

their own strengths and weak points. They all however, aim to either study the hardness of LWE or 

to adjust the problem to be more practical in the actual applications of cryptography.  

The main contribution of this paper is that we provided an algorithm for solving linear congruence 

equations using LU decomposition and justify its efficiency by running the algorithm on large 

matrices and modules on MATLAB.  

For the reduction on LWE, we provide here a more general result based on the conclusions reached 

in Z. Brakerski et al.’s 2013 work. The results can accommodate more matrices than corresponding 

results as stated by Brakerski et al. 

Our algorithm for solving linear congruence will be preceded by a method of solving general linear 

Diophantine equations, some illustrations of that method, and will then be followed by three examples 

of linear congruence equations solved using our algorithm that will demonstrate the amount of 

efficiency our algorithm can achieve. 

In order to obtain our results for the reduction on LWE, we used the same idea as the one in the 

proof of Corollary 3.4 by Brakerski et al. Moreover integer diagonal matrices other than the identity 

matrix which is used in the corollary 3.4 are also employed here. At last, the results that more 

generalized matrices can be used here are done in this paper.  

2. Preliminaries  

In this section, some useful preliminaries are presented. 

2.1 Linear Diophantine Equation 

The general solvable linear Diophantine equation has form: 
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𝑎1𝑥1 +𝑎2𝑥2 +⋅⋅⋅ +𝑎𝑛𝑥𝑛 = 𝑏 

Where 𝑎1, 𝑎2,⋅⋅⋅, 𝑎𝑛  and 𝑏  being integers, with (𝑎1, 𝑎2,⋅⋅⋅, 𝑎𝑛)|𝑏  being the necessary and 

sufficient condition for which there exist integer solutions for the equation. We call a linear 

Diophantine equation solvable if and only if there exist integer solutions, since those are the only 

solutions of interest.  

2.2 Linear Congruence Equations 

For 𝐴 a 𝑛-dimensional full rank matrix, 𝑥 and 𝑏 𝑛-dimensional vectors, and 𝑚 an integer. The 

linear congruence equation of interest in this paper is denoted: 

𝐴𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑚) 

Where the necessary and sufficient condition for there to exist integer solutions is for 

(𝑑𝑒𝑡(𝐴),𝑚)|𝑏. For convenience sake we will denote the determinant of 𝐴 (commonly denoted as 

𝑑𝑒𝑡(𝐴)) only as |𝐴| from now on. 

2.3 LU Decomposition 

For any given full rank 𝑛-dimensional matrix 𝐴, the LU decomposition of it finds 𝐿𝑈 = 𝐴 where 

𝐿, 𝑈 are lower triangular matrix and upper triangular matrix respectively. The decomposition can be 

achieved efficiently by repeatedly adding a multiple of one row of 𝐴 to another.  

2.4 Lattice 

An 𝑛-dimensional lattice Λ is a subgroup of ℝ𝑛
, and is the set of all integer coefficient linear 

combinations of some 𝑛 linearly independent vectors called the set of basis vectors 𝐵:  

 

2.5 Gaussian Distributions 

We define 𝑛-dimensional Gaussian function 𝜌
𝑟
 for 𝑟 > 0 as 

𝜌𝑟(𝑥):= 𝑒𝑥𝑝(−𝜋||𝑥||
2
/𝑟2). 

Then the continuous Gaussian distribution 𝐷𝑟  is defined to be the distribution with density 

function proportional to 𝜌
𝑟
.  

Also define for 𝑛-dimensional lattice 𝛬 and  vector 𝑢 ∈ ℝ𝑛, 𝐷𝛬+𝑢,𝑟 to be the discrete distribution 

with support on coset 𝛬 + 𝑢 with probability mass function proportional to 𝜌𝑟. 

2.6 Learning with Errors 

Let 𝕋 = ℝ/ℤ be the additive group of reals under modulo 1, and 𝕋𝑞 be 𝕋’s subgroup given by 

{0,1/𝑞, . . . , (𝑞 − 1)/𝑞}. 

For integers 𝑛, 𝑞 ≥ 1, integer vector 𝑠 ∈ ℤ𝑛, and probability distribution 𝜙 on ℝ, define 𝐴𝑞,𝑠,𝜙 to 

be the distribution over 𝕋𝑞
𝑛 × 𝕋 acquired by selecting 𝑎 ∈ 𝕋𝑞

𝑛 uniformly at random and choosing an 
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error term 𝑒 from 𝜙, outputting (𝑎, 𝑏 = 〈𝑎, 𝑠〉 + 𝑒) ∈ 𝕋𝑞
𝑛 × 𝕋. 

Lemma 2.1 ([BLP13, Theorem 3.1]) Let 𝑚, 𝑛, 𝑞, 𝑛′, 𝑞′ ≥ 1 be integers, let 𝐺 ∈ ℤ𝑛′×𝑛 satisfy that  

𝛬 =
1

𝑞′
𝐺𝑇ℤ𝑛′ + ℤ𝑛 has a known 𝐵 as a basis, and let 𝒟 be a certain (𝐵, 𝛿)-bounded distribution 

over ℤ𝑛. Let 𝛼, 𝛽 > 0, 𝜀 ∈ (0,1/2) be so that  

𝛽2 ≥ 𝛼2 + (4/𝜋)𝑙𝑛(2𝑛(1 + 1/𝜀)) ⋅ (𝑚𝑎𝑥{𝑞−1, ||𝐵 ||} ⋅ 𝐵)
2
. 

Then exist a transformation reduction from 𝐿𝑊𝐸𝑛,𝑚,𝑞,≤𝛼(𝒟)  to 𝐿𝑊𝐸𝑛′,𝑚,𝑞′,≤𝛽(𝐺 ⋅ 𝒟)  which 

reduces the advantage by ≤ 𝛿 + 14𝜀𝑚. 

Lemma 2.2 ([BLP13, Corollary 3.4]) For 𝑛,𝑚, 𝑞 ≥ 1, 𝑘 ≥ 1, 𝛼, 𝛽 > 0  a divisor of 𝑛,𝒟  a 

(𝐵, 𝛿)-bounded distribution over ℤ𝑛, and 𝜀 ∈ (0,1/2) for which 

, 

Then exist a transformation reduction from 𝐿𝑊𝐸𝑛,𝑚,𝑞,≤𝛼(𝒟)  to 𝐿𝑊𝐸𝑛/𝑘,𝑚,𝑞𝑘,≤𝛽(𝐺 ⋅ 𝒟)  which 

reduces the advantage by ≤ 𝛿 + 14𝜀𝑚, with 𝐺 = 𝐼𝑛 𝑘⁄ ⊗ (1, 𝑞, 𝑞2, . . . , 𝑞𝑘−1)𝑇. 

3. Linear Diophantine Equations 

The main result of this section is Theorem 3.1, which is a method of solving general solvable linear 

Diophantine Equations using integral elementary row operations. Elementary row operations include 

swapping rows, scalar multiplication on rows, and row sum, which is the act of adding multiples of 

one row to another. For our case, we will be using integral row sums, which is when the multiples of 

the row is strictly an integral multiple. We use 𝑢 ⋅ 𝑣 for vectors 𝑢 and 𝑣 to denote the dot product of 

these two vectors. 

Theorem 3.1. For integers 𝑎1, 𝑎2,⋅⋅⋅, 𝑎𝑛 and 𝑏, let (𝑎1, 𝑎2,⋅⋅⋅, 𝑎𝑛) = 𝑔. If 𝑔|𝑏, perform integral 

row sums on the following matrix until 𝑔 appears in the first entry in a certain row 𝑖: 

 

Where the leftmost column are the entries 𝑎1 to 𝑎𝑛 and the next 𝑛 columns form the matrix 𝑚 ⋅ 𝐼𝑛, 

where 𝑔 ⋅ 𝑚 = 𝑏 . Suppose the entries of row 𝑖  after the operation are (𝑔𝑐1𝑐2 ⋅⋅⋅ 𝑐𝑛) , then the 

solutions to the linear Diophantine equation 𝑎1𝑥1 + 𝑎2𝑥2 +⋅⋅⋅ +𝑎𝑛𝑥𝑛 = 𝑏  are 𝑥1 = 𝑐1𝑥2 = 𝑐2 ⋅⋅⋅
𝑥𝑛 = 𝑐𝑛. 

Proof. Note that for each step of the integral row sum, 𝐴 is multiplied by a 𝑛 × 𝑛matrix with 

determinant equating 1. Thus, the matrix after the operation is 𝐴 ⋅ 𝐵 for a 𝑛 × 𝑛matrix 𝐵 with |𝐵| =

1. Let row 𝑖 of 𝐵 be (𝑏1𝑏2 ⋅⋅⋅ 𝑏𝑛), then row 𝑖 of 𝐵 ⋅ 𝐴 has first entry: (𝑏1𝑏2 ⋅⋅⋅ 𝑏𝑛) ⋅ (𝑎1𝑎2 ⋅⋅⋅ 𝑎𝑛), 

the other 𝑛 entries be (𝑚𝑏1𝑚𝑏2 ⋅⋅⋅ 𝑚𝑏𝑛). Since we picked row 𝑖 such that (𝑏1𝑏2 ⋅⋅⋅ 𝑏𝑛) ⋅ (𝑎1𝑎2 ⋅⋅⋅
𝑎𝑛) = 𝑔, then  (𝑚𝑏1𝑚𝑏2 ⋅⋅⋅ 𝑚𝑏𝑛) ⋅ (𝑎1𝑎2 ⋅⋅⋅ 𝑎𝑛) = 𝑚 ⋅ (𝑏1𝑏2 ⋅⋅⋅ 𝑏𝑛) ⋅ (𝑎1𝑎2 ⋅⋅⋅ 𝑎𝑛) 
= 𝑚𝑔 = 𝑏. So (𝑚𝑏1𝑚𝑏2 ⋅⋅⋅ 𝑚𝑏𝑛), which is (𝑐1𝑐2 ⋅⋅⋅ 𝑐𝑛) under our notation, are the solutions 

(𝑥1𝑥2 ⋅⋅⋅ 𝑥𝑛) to the linear Diophantine equation.  

Next we will be providing an example of solving linear Diophantine equations with the method 
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we proposed. 

Example 3.2. We attempt to solve the linear Diophantine equation 22𝑥 + 48𝑦 = 8  using 

Theorem 3.1. Build matrix 𝐴 as needed: 

 

Then perform the elementary integral row-operations as described in Theorem 3.1: 

 

Since (22,48) = 2, we take the row (244 − 20), by Theorem 3.1 the solution to 22𝑥 + 48𝑦 =
8 is then 𝑥 = 44, 𝑦 = −20. A quick check shows that indeed 22 ⋅ 44 + 48 ⋅ (−20) = 8. 

4. LU Decomposition Method for Linear Congruence Equations 

The main theorem of this section which utilizes LU decomposition to solve linear congruence 

equations is listed below. Denote the adjoint matrix of any matrix 𝐴 to be , for which = |𝐴| ⋅
𝐴−1. 

Theorem 4.1. For full rank 𝑛-dimensional matrix 𝐴, vector b, and module m, let (|𝐴|,𝑚) = 𝑔. If 

𝑔|𝑏, then the general solution for 𝑥 is: 

𝑥 ≡ (
|𝐴|

𝑔
)−1|𝐴|𝐴−1

𝑏

𝑔
+
𝑚

𝑔
𝑘(𝑚𝑜𝑑𝑚)𝑘 ∈ ℤ, 𝑘 = 0,1,⋅⋅⋅, 𝑔 − 1 

Proof. The calculation process that directly leads to the result is listed below. 

𝐴 𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑚) 

|𝐴|𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑚) 

|𝐴|

𝑔
𝑥 ≡ 

𝑏

𝑔
(𝑚𝑜𝑑

𝑚

𝑔
) 

𝑥 ≡ (
|𝐴|

𝑔
)−1

𝑏

𝑔
(𝑚𝑜𝑑

𝑚

𝑔
) 

𝑥 ≡ (
|𝐴|

𝑔
)−1|𝐴|𝐴−1

𝑏

𝑔
(𝑚𝑜𝑑

𝑚

𝑔
) 

𝑥 ≡ (
|𝐴|

𝑔
)−1|𝐴|𝐴−1

𝑏

𝑔
+

𝑚

𝑔
𝑘(𝑚𝑜𝑑𝑚)𝑘 ∈ ℤ, 𝑘 = 0,1,⋅⋅⋅, 𝑔 − 1     

The below corollary is a special case of Theorem 4.1 that follows directly from the proof above. 

Corollary 4.2. For full rank 𝑛-dimensional matrix 𝐴, vector b, and module m, if (|𝐴|,𝑚) = 1, 

then the general solution for 𝑥 is unique: 

𝑥 ≡ |𝐴|−1|𝐴|𝐴−1𝑏(𝑚𝑜𝑑𝑚) 

5. Numerical Tests 

In this section we will provide three cases of the application of Theorem 4.1, the first case with a 

small value of 𝑛 where 𝑛 is the dimension of matrix 𝐴, the second case with large value of𝑛 but still 

with |𝐴| coprime with 𝑚, while the last case is most complicated, with (|𝐴|,𝑚) ≠ 1. 

In order to test the efficiency of our algorithm presented in Theorem 4.1, we do these tests on 
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MATLAB to demonstrate its level of efficiency, and the corresponding computer is equipped with 8-

core cpu and 8GB memory. The following three examples each have different levels of complexity 

yet are all based on our algorithm. 

Example 5.1. For small values of 𝑛 where 𝑛 is the dimension of matrix 𝐴 in the linear congruence 

equation 𝐴𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑚), we restrict |𝐴| to be coprime to 𝑚, and base our example upon the results 

of Corollary 4.2.  

For runtime efficiency testing purposes, we build the equations as follows. We first assign the 

solution 𝑥 to be the 𝑛-dimensional vectors of all ones. Then we construct 𝐴 by first constructing 

matrices 𝐿, 𝑈 that are lower and upper triangular matrices such that 𝐿 ⋅ 𝑈 = 𝐴. Let the main diagonal 

of 𝑈 be of all ones except for the last element, which for our case we set it equal to 7. Then let the 

main diagonal of 𝐿 be of all ones, Lastly we let the other possible nonzero elements of both 𝐿 and 𝑈 

be integers uniformly selected at random from [0,3]. This selection was made possible by first 

selecting those elements randomly from the real numbers between 0 and 1, then multiplying each 

element by 3 and rounding them to the nearest integer. Note that since the determinant of triangular 

matrices is just the product of the elements of the diagonal, |𝑈| = 7, |𝐿| = 1, giving |𝐴| = 7. In fact, 

our choice for the matrices 𝐿 and 𝑈 is to ensure we know the determinant of 𝐴 and we can control 

the condition number of 𝐴. In our tests, let 𝑚 = 5 where 𝑚 is the modules in 𝑏 ≡ 𝐴𝑥(𝑚𝑜𝑑𝑚). 

Afterwards we compute |𝐴|−1 ≡ 7−1 ≡ 3(𝑚𝑜𝑑5), then lastly we use the results of Corollary 4.2 to 

compute 𝑥 ≡ 3 ⋅ 7 ⋅ 𝐴−1𝑏(𝑚𝑜𝑑5). 
We run this code 1000 times and saved the runtime, condition number of 𝐴, and the norm of the 

difference between the achieved answer 𝑥 and the expected answer 𝑒 of each run. The latter data set 

consists of small real numbers > 0, specifically for our run the range of the data set is [6.5034 ⋅
10−11, 0.0590], with a mean of 3.6 ⋅ 10−4 . Although those numbers are not exactly 0 , as it is 

supposed to be, we are only concerned about integer solutions, and these errors are small enough to 

be all rounding to 0 instead of 1. Keeping this in mind, we also save the norm of the difference 

between the rounded version of 𝑥 and the expected answer 𝑒. This resulting data set is unsurprisingly 

of all 0s.  

The datasets for runtime and condition numbers of 𝐴 for different values of 𝑛 (each for 1000 

tests) can be seen in the table below(Table 1). 

Table 1: Results of Example 5.1. 

𝑛 

Data 

𝑛 = 10 𝑛 = 15 𝑛 = 20 𝑛 = 25 

Max runtime 0.0210 0.0401 0.0096 0.0146 

Min runtime 1.4208 ⋅ 10−5 1.20 ⋅ 10−5 3.4666 ⋅ 10−5 5.2375 ⋅ 10−5 

Average runtime 6.4240 ⋅ 10−5 6.4240 ⋅ 10−5 6.6944 ⋅ 10−5 9.4918 ⋅ 10−5 

Min condition # 1 1 1 1 

Max condition # 1.3299 ⋅ 107 3.5225 ⋅ 109 7.1558 ⋅ 1012 2.6156 ⋅ 1013 

Average condition # 2.4785 ⋅ 105 3.3985 ⋅ 107 1.200 ⋅ 1010 3.5861 ⋅ 1011 

As shown, values for runtime are small enough for us to deem our algorithm efficient for small 

dimensions of 𝐴 such as in this example.  

Regarding the condition number of 𝐴. Since 𝐴 is a relatively small matrix with minimum 𝑛 = 10 

and maximum 𝑛 = 25 , these condition numbers are high enough to deem 𝐴  to be a very ill-

conditioned matrix in every value of 𝑛. However, the resulting norm of the difference of the achieved 

solution 𝑥 and the expected solution 𝑒 is still low enough to be acceptable under the condition that 
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we only care about the discrete integer solutions. This shows the stability of our algorithm, as it 

remains accurate when a small matrix 𝐴 is very ill-conditioned. 

Example 5.2. For this example matrix 𝐴 of higher dimensions are concerned, namely matrices of 

dimension 𝑛 = 30000. Again for this example we restrict |𝐴| to be coprime with the module 𝑚, so 

this example is still based on the results of Corollary 4.2, but on a larger scale. 

Similar to the previous example, we build this example as follows. The expected solution for 𝑥 is 

still the 𝑛-dimensional vector of all 1s. Then 𝐿 is constructed to have main diagonal with all 1 entries 

and the diagonal immediately under the main diagonal with also all 1 entries. 𝑈 on the other hand is 

the matrix with main diagonal with all 1s except the last entry, which is assigned to be 5, and the 

diagonal immediately above the main diagonal has all 1 entries. 𝐴 is then 𝐿 ⋅ 𝑈. Consequently, we 

have |𝐿| = 1, |𝑈| = 5 ⇒ |𝐴| = |𝐿| ⋅ |𝑈| = 5 . Again we assign 𝐿  and 𝑈  this way so that the 

determinant of 𝐴 is known. Next we set 𝑚 = 7 and calculate 𝑏 ≡ 𝐴𝑥(𝑚𝑜𝑑𝑚). This time we ask the 

code to find |𝐴|−1(𝑚𝑜𝑑𝑚), and since 𝑚 = 7 has a relatively small multiplicative group, we simply 

run the code to traverse through all residue classes 𝑚𝑜𝑑7 to find that 3 ⋅ |𝐴| ≡ 1(𝑚𝑜𝑑𝑚). Finally 

we conclude that 𝑥 ≡ 3 ⋅ 5 ⋅ 𝐴−1 ⋅ 𝑏(𝑚𝑜𝑑𝑚). 
We run this code 1000 times again, saving the runtime, condition number of 𝐴, and the norm of 

the difference between the achieved solution 𝑥 and the expected solution 𝑒. This time since 𝐿 and 𝑈 

are completely determined, the latter data is the same each run, and for our run the result is 2.1755 ⋅
10−13. This is again a small number concerning the fact that we only care about integer solutions. 

Therefore, we again calculate the rounded value of 𝑥 and is not surprised to see that it is 0 every test.  

The datasets for runtime and condition numbers of 𝐴 for different values of 𝑛 (each for 1000 

tests) can be seen in the table below (table 2). 

Table 2: Results of Example 5.2. 

𝑛    

Data  

𝑛 = 100 𝑛 = 200 𝑛 = 300 𝑛 = 30000 

Max runtime 0.0657 0.0462 0.0085 0.1398 

Min runtime 2.50 ⋅ 10−4 3.17 ⋅ 10−4 4.00 ⋅ 10−4 0.0227 

Average 

runtime 
4.17 ⋅ 10−4 4.47 ⋅ 10−4 5.36 ⋅ 10−4 0.0249 

Condition # 3.50 ⋅ 104 1.40 ⋅ 105 3.14 ⋅ 105 3.15 ⋅ 109 

Although we see quite a significant increase in average runtime from the previous example to this 

example, it is acceptable considering the drastic increase in 𝑛. Thus, we conclude that the algorithm 

is still efficient when it comes to sizes of 𝑛 as large as 𝑛 = 30000. Note that although 𝑛 is larger in 

this example, the norm of the difference between the achieved solution 𝑥 and the expected solution 

𝑒 is smaller in this example than the previous, this is due to the fact that the previous example 

involved randomly generated 𝐿 and 𝑈 while this example has known simple cases of 𝐿 and 𝑈.  

As shown above, the condition numbers for each case are not that large of numbers considering 𝐴 

having dimension up to 𝑛 = 30000. Thus, we are working with a well-conditioned matrix here.  

Example 5.3. In this example we work with the most complicated case, with a large dimension of 

𝐴, namely 𝑛 = 30000, and moreover (|𝐴|,𝑚) > 1. As a result we will be employing Theorem 4.1 

directly for this example. 

The buildup process for this example is almost identical to the previous example. The solution 𝑥 

is again assigned to be the 𝑛-dimensional vector of all 1s, 𝐿 is the same matrix as in the previous 

example with the main diagonal and the diagonal immediately under it being of all 1s and everything 
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else being 0, whilst 𝑈 is the matrix with the main diagonal having all 1 entries except for the last 

entry being 6 and the diagonal immediately above it having all 1 entries. In this example we assign 

𝑚 = 8. Note that |𝐴| = |𝐿| ⋅ |𝑈| = 6, and (|𝐴|,𝑚) = 2 > 1. Lastly we compute 𝑏 ≡ 𝐴𝑥(𝑚𝑜𝑑𝑚). 

Then we calculate 
|𝐴|

𝑔
,
𝑚

𝑔
,  and 

𝑏

𝑔
(𝑚𝑜𝑑

𝑚

𝑔
)  with 𝑔 = (|𝐴|,𝑚) = 2 , also finding (

|𝐴|

𝑔
)−1(𝑚𝑜𝑑

𝑚

𝑔
) 

using the same process as described in the previous example, which is iterating through the 

equivalence classes 𝑚𝑜𝑑
𝑚

𝑔
. Finally, by Theorem 4.1, 𝑥 ≡ (

|𝐴|

𝑔
)−1|𝐴|𝐴−1

𝑏

𝑔
≡ 3 ⋅ 6 ⋅ 𝐴−1

𝑏

2
(𝑚𝑜𝑑

𝑚

2
) 

This code is runned 1000 times again, saving runtime and the norm of the difference between the 

achieved solution 𝑥 and the expected solution 𝑒. The latter is a set value just as in the previous 

example, and for our run the value turns out to be 1.6316 ⋅ 10−13. Again this value is low enough to 

be rounded to 0 since we only care about integer solutions. 

The datasets for runtime and condition numbers of 𝐴 for different values of 𝑛 (each for 1000 

tests) can be seen in the table below(table 3). 

Table 3: Results of Example 5.3.  

𝑛    

Data  

𝑛 = 100 𝑛 = 200 𝑛 = 300 𝑛 = 30000 

Max runtime 0.0342 0.0124 0.0100 0.1843 

Min runtime 2.55 ⋅ 10−4 3.21 ⋅ 10−4 4.10 ⋅ 10−4 0.0227 

Average 

runtime 
3.34 ⋅ 10−4 3.92 ⋅ 10−4 5.36 ⋅ 10−4 0.0250 

Condition # 3.97 ⋅ 104 1.59 ⋅ 105 3.59 ⋅ 105 3.60 ⋅ 109 

The results for runtime in this example is similar to the result in the previous example, so it’s safe 

to conclude that the algorithm is also efficient for large values of 𝑛 and (|𝐴|,𝑚) > 1. 

The condition numbers for 𝐴 as can be seen above are also not large considering 𝐴 has dimension 

𝑛 = 30000. Thus, in this example 𝐴 is also well-conditioned. 

Discussion of Results. As we have shown, the algorithm works for cases of small and large 𝑛 

regardless of the value of (|𝐴|,𝑚). However, for all these above examples, note that we forcefully 

manipulated 𝐿 and 𝑈 so that |𝐴| is a known small value. However, the algorithm fails when |𝐴| is 

a random large value, large values of |𝐴| enlarges any existing error. When |𝐴| is on the level of 

1011, which can easily happen when the diagonals of both 𝑈 and 𝐿 are randomly generated, errors 

that were insignificant and negligible in cases of small |𝐴| become enlarged to a significantly large 

error. Other things that can affect the accuracy of the algorithm are the dimension of 𝐴 and the 

condition number of 𝐴. Namely, the accuracy of the algorithm decreases when 𝐴 is a significantly ill-

conditioned matrix. Our algorithm is decently stable though since Example 5.3 shows it to be resistant 

to very ill-conditioned matrices as long as the dimensions of 𝐴  is small enough. When high 

dimensions of 𝐴 is combined with large condition numbers of 𝐴, the algorithm succumbs and returns 

high error. For example, we twist the code for Example 5.3 slightly and increase the dimension to 

𝑛 = 300. One run shows the condition number to be 6.4582 ⋅ 1018, which means 𝐴 is very ill-

conditioned in this case. Under the condition that 𝐴 is a high dimension ill-conditioned matrix, the 

norm of the difference between the achieved solution 𝑥 and the expected solution 𝑒 is as high as 

36.0918, meaning the algorithm fails short in this case. 

In conclusion, our algorithm works in cases of 𝐴 with small determinants, and either having a 

small dimension or being well-conditioned. It fails however, when 𝐴 has a large determinant or when 
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it is both large and ill-conditioned. 

6. Reduction 

As our algorithm to solve linear congruence equations in the previous sections shows, problems 

previously thought to have strong hardness levels for which classical cryptography systems were 

based are starting to become increasingly breakable. Thus, it is of high importance for researchers to 

devise new problems that are currently unbreakable, especially under the circumstances that we are 

entering the post-quantum world. 

The main result of this section is the following theorem, which is a special case of Lemma 2.1, 

and a generalization of Lemma 2.2. Let 𝐴𝑛 be a diagonal matrix of dimension 𝑛 × 𝑛, and 𝑚𝑎𝑥(𝐴𝑛) 
be the largest element in the matrix, i.e.  

𝑚𝑎𝑥(𝐴𝑛) = 𝑎𝑚𝑚𝑓𝑜𝑟1 ≤ 𝑚 ≤ 𝑛𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡∄1 ≤ 𝑟 ≤ 𝑛𝑤𝑖𝑡ℎ𝑎𝑟𝑟 > 𝑎𝑚𝑚. 

 

Theorem 6.1. For 𝑛,𝑚, 𝑞 ≥ 1, 𝑘 ≥ 1, 𝛼, 𝛽 > 0 a divisor of 𝑛,𝒟 a (𝐵, 𝛿)-bounded distribution 

over ℤ𝑛, and 𝜀 ∈ (0,1/2) for which 

𝛽2 ≥ 𝛼2 + (4/𝜋)𝑙𝑛(2𝑛(1 + 1/𝜀)) ⋅ (𝑎𝐵/𝑞)2, 

there exist a transformation reduction from 𝐿𝑊𝐸𝑛,𝑚,𝑞,≤𝛼(𝒟)  to 𝐿𝑊𝐸𝑛/𝑘,𝑚,𝑞𝑘,≤𝛽(𝐺 ⋅ 𝒟)  that 

reduces the advantage by ≤ 𝛿 + 14𝜀𝑚, with 𝐺 = 𝐴𝑛 𝑘⁄ ⊗ (1, 𝑞, 𝑞2, . . . , 𝑞𝑘−1)𝑇. and 𝑚𝑎𝑥(𝐴𝑛 𝑘⁄ ) =

𝑎.  

Proof. Let 𝑛′ = 𝑛/𝑘, 𝑔 = (1, 𝑞, 𝑞2, . . . , 𝑞𝑘−1)
𝑇
, we first represent 𝐺 in matrix form. 

 

Let 𝛬 = 𝑞−𝑘𝐺ℤ𝑛′ + ℤ𝑛, which means 𝛬’s lattice points are those that are linear combinations of 

the column vectors 𝑞−𝑘𝐺 plus an arbitrary 𝑛-dimensional integer vector.  

We now claim that a basis 𝐵 for 𝛬 has the form: 

 

This is true because all the column vectors in 𝐵 belong in 𝛬 and they are linearly independent, 

which is clear by calculating the determinant of 𝐵. 

Orthogonalization from left to right, we get: 

B̃= 𝐴𝑛′ ⊗𝑞−1𝐼𝑛′ 
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Thus ||𝐵 || = 𝑚𝑎𝑥(𝐴𝑛′) ⋅ 𝑞
−1, since we assumed 𝑎 = 𝑚𝑎𝑥(𝐴𝑛′) > 0, then 𝑚𝑎𝑥{𝑞−1, ||𝐵 ||} =

||𝐵 || = 𝑎𝑞−1. By Lemma 2.2, we done the proof. 

7. Conclusion 

This paper first establishes an algorithm to solve general solvable linear Diophantine equations, 

then proposes an algorithm to solve the linear congruence equation 𝐴𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑚) which works for 

𝐴 with a small determinant and either a small dimension or the property of being well-conditioned. 

Next the paper generalizes the corollary 3.4 in Brakerski et al.’s 2013 paper by using a general 

diagonal matrix other than the identity matrix. 

This generalization makes more types of matrices useful in the reduction. It is helpful for us to 

understand the hardness of LWE. 

Open questions. As discussed in Section 5, our algorithm for solving linear congruence problems 

fails short when it comes to matrices with large determinant or with both a large dimension and the 

property of being ill-conditioned. Thus, we wonder if it is possible to overcome those problems and 

improve our proposed algorithm so that it accommodates these situations where our original 

algorithm fails in. Our first instinct is to use some sort of iterative method such as the Jacobi method, 

but we do notice that the Jacobi method on its own is also not sufficient since it only works for 

diagonally dominant matrices.  

Additionally, as we expand Brakerski et al.’s Corollary 3.4 from only discussing the case for which 

the matrix is the identity to discussing it for any diagonal matrix, we could not help but wonder if it 

is possible to extend the argument further and have meaningful results for other choices of matrices. 

We do not know what results will the expanding of argument bring us regarding our understanding 

of the hardness of LWE, which is a crucial motivation for any types of reduction upon LWE, but it is 

certainly satisfactory to extend the proof simply for the purpose of making it more general.   
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