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Abstract: Accurate segmentation of skin lesion areas is of great significance for computer-

aided diagnosis. However, due to the irregular shape, boundary blurring, and noise 

interference of skin lesion images, accurate segmentation is difficult and has low precision. 

Therefore, it proposes an improved dense recurrent residual U-Net model. Firstly, This 

improved network use of dense recurrent residual connections in the Squeeze-and-

Excitation convolution block design to alleviate gradient vanishing and provide accurate 

location information for segmentation; Secondly, the integration of feature adaptive modules 

between the encoder and decoder to enhance feature fusion between adjacent layers. Finally, 

a combined Dice and cross-entropy loss function is adopted to mitigate the class imbalance 

issue in skin lesion image segmentation. The model is evaluated on the public dataset ISIC 

2017, achieving Jaccard, Dice, and accuracy scores of 78.86%, 86.92%, and 94.61% 

respectively. The experimental results demonstrate that the proposed model outperforms 

other networks in terms of segmentation performance and provides more accurate 

segmentation results.   

1. Introduction 

Skin cancer is one of the most prevalent and deadly cancer types, with an estimated 18.1 million 

cases of non-melanoma skin cancer patients in 2020, of which 9.9 million were fatal cases[1]. Early 

diagnosis is crucial to improve the survival rate of skin cancer patients. Skin malignancies include 

squamous cell carcinoma, basal cell carcinoma, malignant melanoma, and others[2]. Although 

dermatoscopy is the main method for clinical diagnosis of skin cancer, processing a large number of 

dermatoscopic images consumes a considerable amount of time and is subject to subjective 

judgments[3,4]. Therefore, it is of great significance to develop computer-aided diagnostic systems 

to assist doctors in automatically identifying skin lesion areas and providing accurate diagnostic 

results[5]. 

Machine learning has been widely used in skin lesion segmentation[6]. However, commonly used 

methods such as the adaptive global threshold based on color model normalization by Thanh et al[7]. 

and the automatic threshold determination method based on type-2 fuzzy logic algorithm by Emin et 

al[8]. require manually setting parameters and have relatively cockamamie steps. To address these 
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issues, Alexander et al[9]. proposed an iterative random region merging method for macroscopic 

image segmentation, while Jaisakthi[10] combined the GrabCut and K-means algorithms to achieve 

skin lesion segmentation. Additionally, Ahn et al[11]. developed a method that utilizes sparse 

reconstruction and background detection, combined with a Bayesian framework for lesion area and 

boundary segmentation. However, these methods still have limitations in accuracy when dealing with 

cases where normal skin and lesion areas are highly similar. 

In recent years, with the rapid development of computers, deep learning has attracted widespread 

attention and application in the field of computer vision. Convolutional neural networks have 

achieved significant breakthroughs in medical image classification[12], multi-object detection[13], 

and tissue pathological image segmentation tasks[14]. Especially in the field of medical image 

segmentation, deep learning has achieved remarkable results. Medical image segmentation is a dense 

pixel classification problem. Long et al[15]. proposed a fully convolutional network (FCN) for 

semantic segmentation, while Nasr E et al[16]. combined the FCN model and dense pooling layers 

for skin lesion image segmentation. However, due to the small receptive field, FCN cannot obtain 

global information, resulting in insufficient segmentation accuracy. To address this issue, 

Ronneberger et al[17]. proposed a symmetric structure-based U-Net, which has become one of the 

most commonly used frameworks in medical image segmentation. However, there is a semantic gap 

between the encoder and decoder of U-Net, and multiple downsampling operations can lead to 

information loss.Therefore, Ibteha et al[18]. proposed the MultiResUNet model, which replaces the 

original U-Net convolution block with multi-level residual blocks to learn multi-scale feature 

information, and optimizes skip connections to residual paths to reduce semantic gaps between the 

encoder and decoder. In addition, Rehman et al[19]. preprocessed images and introduced conditional 

random fields into the segmentation network to improve the accuracy of skin lesion segmentation. 

Gu et al[20]. used edge-guiding modules in U-Net networks to improve the segmentation accuracy 

of skin lesion boundaries. Hu et al[21]. proposed AS-Net networks, which combine channel and 

spatial attention mechanisms to improve the recognition ability of skin lesion segmentation. For 3D 

medical image segmentation problems, Lin Wei et al[22]. proposed a 3D U-Net model, which 

achieved excellent results in segmentation outcomes. However, due to the low contrast, blurry 

boundaries, different sizes and shapes of lesion areas, as well as many interference noises (such as 

bubbles, blood vessels, light spots, and hairs), these factors can seriously affect the segmentation 

performance[23]. Therefore, achieving accurate skin lesion segmentation remains a highly 

challenging task. 

This study proposes an improved dense recurrent residual U-Net model (IDR2U-Net) for 

automatic segmentation of skin lesion areas. Based on the original U-Net network, the model is 

improved by designing Squeeze-and-Excitation (SE) convolution blocks and using dense recurrent 

residual connections to address issues such as semantic gap and feature information loss. In addition, 

a feature adaptive module is used in the skip connections of the encoder and decoder to improve the 

efficiency of feature fusion and enhance the segmentation accuracy of boundary-blurry images. To 

address the class imbalance issue in skin lesion images, a combined loss function of joint cross-

entropy and Dice coefficient is used. Experimental results on the ISIC 2017 dataset demonstrate the 

superior performance of the proposed method in terms of segmentation accuracy. 

2. Methods 

2.1 Network 

This article proposes a skin lesion image segmentation algorithm based on the U-Net model, which 

uses SE blocks, dense recurrent residual convolution (DRR), and a feature adaptation module (FAM). 

In the feature encoding section, each layer uses an SE convolution block to extract features, which 
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can re-adjust the weight of channel features and enhance useful channel information. The dense 

recurrent residual (DRR) connection method is used to further enhance the model's feature extraction 

ability, increase gradient flow, and reduce semantic differences. Then, a max pooling layer with a 

stride of 2 is used for downsampling. In the feature decoding section, features from the encoding 

stage are merged with upsampled features through the FAM, which can adaptively match the 

distribution of two feature maps in the decoder, improve feature fusion efficiency, and bridge the 

semantic gap. After that, a SE convolution block with DRR connection is added, and finally, a 1×1 

ordinary convolution block is connected to the output image. The specific structure is shown in 

Figure 1. 

In this network, the input image size is 256×256 with 3 channels, and the output image size is also 

256×256 with 2 channels, corresponding to the two prediction results: skin lesion area and non-skin 

lesion area. SE-DRR refers to the improved SE convolution block using DRR connection method, 

FAM refers to the feature adaptation module, Down-sampling refers to the downsampling layer, Up-

sampling refers to the upsampling layer, Final convolution refers to a 1×1 ordinary convolution block, 

and Skip connection refers to the skip connection. 

 

Figure 1: IDR2U-Net network structure diagram. 

2.2 SE-DRR module 

2.2.1 SE-conv 

Channel attention is used to enhance the discrimination ability of feature information and suppress 

irrelevant background information. By explicitly modeling the inter-channel dependencies, the 

network can assign more weights to important features, greatly improving the model's performance 

and accuracy. In this study, we adopt the Squeeze-and-Excitation block (SE) structure[24], which is 

shown in Figure 2. Among them, Ftr represents the traditional convolution operation. Let x and uc be 

the input (c1×h×w) and output (c2×h×w) of Ftr, respectively. The calculation formula is as follows: 

1

tr

1

:   * = *
c

s s

c c c

s

F u v x v x


                          (1) 

Among them, vc represents the c convolution kernel, xs represents the s input covered by the current 

convolution kernel. 

Firstly, the output uc undergoes global average pooling operation is Fsq(·), with the formula as 

follows: 
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Then, the feature map is subjected to two stages of full connection operation is Fex(·). The 

calculation formula is as follows: 

1( , )=sigmoid( *Relu( ))ex c cF z w w w z                      (3) 

Among them, w1 and w2 represent linear layers, sc represents the feature weights of each channel, 

and finally undergoes Fscale(·) operation, each channel value multiplied by its weight sc. The final 

output result is uc×sc. The introduction of SE block slightly increases the computational complexity 

of the entire network, but the segmentation effect is significantly improved. 

 

Figure 2: SE module. 

2.2.2 DRR connection 

The convolutional block structure in Convolutional Neural Networks (CNNs) has a significant 

impact on medical image segmentation results. To improve feature propagation and further optimize 

segmentation accuracy, this study proposes an improvement to the original convolutional block and 

the connections between them. Figure 3 shows the connection structure diagram of the convolutional 

block. The original U-Net convolutional block is used for image feature extraction, consisting of two 

3×3 convolutions and ReLU activation functions. The improved SE-conv block uses recurrent and 

residual structure connections to reduce overfitting in the network and also has a regularization 

effect[25]. Secondly, dense skip connections are added between the recurrent residual convolutional 

blocks to increase gradient flow and reduce semantic differences. The optimized network has stronger 

feature extraction capabilities and more stable training results. 

The recurrent operation is because Recurrent Neural Networks (RNNs) receive an input at each 

time step and also consider the output state of the previous time step. Assuming xl is the input of the 

neural network at the lth layer, and there is a pixel position (i, j) at the kth feature map of the recurrent 

layer, then the network output at that position is:  

             
T T, ,

= * + * 1
f i j r i jl f r

ijk k l k ly t w x t w x t                    (4) 

    , =max 0, l

l l ijkF x w y t                             (5) 

In the formula, F(xl,wl) represents the output value of the ReLU operation for the lth layer. Then, 

the output is passed through the residual layer, The resulting output is: 

 1 ,l l l lx x F x w                                  (6) 

xl represents the input to the recurrent layer and is added to the output of the recurrent layer. In this 

paper, dense connections are adopted between the convolutional layer and the recurrent layer to better 

implement feature extraction across layers. Therefore, the final output is: 

30



             
T T, ,

= * + * 1
f i j r i jl f r

ijk k l k ly t w H x t w H x t                (7) 

In the formula, H(·) is a composite function of the output from the previous convolutional block. 

 

Figure 3: SE-DRR module. 

2.3 FAM module 

To improve the low efficiency of feature fusion, large noise of feature maps, and spatial 

information loss in the original U-Net structure, this article proposes a new feature adaptive module 

to record the feature distribution between the encoder and decoder[26]. The feature adaptive module 

mainly consists of multiple 3×3 and 1×1 convolution layers, as shown in Figure 4. Specifically, this 

module can adjust the number of channels through 1×1 convolution layers to maintain the 

dimensionality of feature maps unchanged, and increase the receptive field and learn richer features 

through 3×3 convolution layers. It can capture the relationship between adjacent pixels and merge 

multiple convolution kernels for multiple convolutions to achieve nonlinear perception. By 

combining multiple convolution layers, the feature adaptive module can learn richer, more abstract 

feature representations, thereby improving the performance of deep neural networks. Compared with 

the attention gate (AG)[27] module, this module uses relatively few parameters, has lighter weight, 

and has high storage efficiency. 

 

Figure 4: FAM module. 

2.4 Joint Cross-entropy, Dice and BCE 

Due to the significant variations in lesion size in the skin lesion dataset, it was observed that the 

convergence speed of the model was influenced by the size of the lesion. To address this issue and 

reduce overfitting, a combined loss function of cross-entropy, BCE and Dice coefficient was 

employed for training the segmentation network. The formula for this combined loss function is 

defined as follows: 

Dice = 1-2   
i ii

i ii i

PG
L

P G





 

                            (8) 

     BCE = 1- ln 1- lni i i ii
L G P G P                          (9) 
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In the formula, Gi represents the true class label of the i pixel, and Pi represents the predicted class 

label of the i pixel. 

The final loss function is composed of the above two loss functions, and its formula is defined as 

follows: 

 BCE Dice= + 1-L αL α L                              (10) 

The coefficients α and (1-α) represent the weighting factors for the corresponding loss functions. 

The loss function used in this paper combines the advantages of both, which enhances the accuracy 

of segmenting skin lesions of different sizes. 

3. Experiment 

3.1 Datasets 

The dataset used in this experiment is the publicly available ISIC 2017, which is a dermatology 

image dataset that includes single, multiple, and lesion-based skin images from around the world. It 

contains more than 2000 different types of skin cases with high-quality images and a resolution of 

2048×1536 pixels. The ISIC 2017 dataset includes images of different types and severity levels of 

skin lesions, including 514 basal cell carcinomas, 327 squamous cell carcinomas, 374 melanomas, 

and 1372 benign lesions. All images have been manually annotated by professional doctors and 

provide detailed metadata information for algorithm training, testing, and evaluation. The dataset has 

been divided into training set (2000 images), validation set (150 images), and test set (600 images). 

To obtain higher computational efficiency, the size of all images was uniformly adjusted to 

256×256 pixels. Preprocessing operations such as image resizing were applied to the input images to 

normalize the data fed into the model and have it follow a standard normal distribution, which 

facilitates better training and application of deep learning models. 

3.2 Experimental setup and implement details 

3.2.1 Training and testing  

Experimental hardware environment: The processor is Intel (R) Core (TM) i5-7500 CPU @ 

3.40GHz, the memory (RAM) is 16.0 GB, and the GPU is NVIDIA V100. The software environment 

is Windows 10, Python3.9, CUDA11.2, CUDNN11.2, using the Tensorflow 2.9.1 deep learning 

framework for overall model construction. 

During the training process, we modified the initial learning rate, momentum, weight decay 

regularization and other parameters of each network to acquire their best performance. The input 

image size is adjusted to 256x256 pixels. In the experimental stage, Due to the memory constraints 

of the GPU, we utilize the Adam optimizer for optimization and gradient update. The training batch 

size is set to 16, and the initial learning rate is set to 0.0002. The momentum parameter is set to the 

default value of 0.99, and the training iterates for 200 epochs.The preliminary experimental results 

shown indicate that the best segmentation effect is achieved when α is set to 0.6. When the cross-

entropy loss function accounts for 0.6. Therefore, the weight factor for the evaluation indicators in 

this article is selected as this value. 

3.2.2 Evaluation 

To evaluate the segmentation results and compare them with other methods, the following 

evaluation metrics are adopted in this article. Jaccard index (JAC) indicates the overlap rate between 
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the network's segmented skin lesion area and the true label area; Dice coefficient (DICE) indicates 

the similarity between the predicted skin lesion area and the true label area; Accuracy (ACC) indicates 

the overall accuracy of all pixel classifications; Sensitivity (SEN) indicates the recall rate of the skin 

lesion area; Specificity (SPE) indicates the accurate segmentation degree of non-lesion areas. The 

relevant metrics are calculated as follows: 

TP

TP FN
SEN 


                                 (11) 

TN

TN FP
SPE 


                                 (12) 

TP

TP FP+FN
JAC


                                 (13) 

2 TP

2 TP FN FP
DICE






 
                              (14) 

TP+TN

TP FP+TN+FN
ACC


                               (15) 

In the formula, TP, FP, FN, and TN represent true positive, false positive, false negative, and true 

negative, respectively. 

3.3 Result and analysis 

To validate the performance of the proposed IDR2U-Net model for skin lesion segmentation, we 

conducted comparative experiments with U-Net[28], R2U-Net[29], and DA-Net[30] under the same 

experimental settings. The loss function curves of these networks on the validation set of the ISIC-

2017 dataset are shown in Figure 5. Table 1 presents the evaluation results of skin lesion segmentation 

on the test set using various models. 

 

Figure 5: Loss curve of U-Net, R2U-Net, DANet and Ours. 

The loss function curve shows that the IDR2U-Net model has the smallest loss, converges fastest, 

and does not exhibit significant overfitting, indicating good performance for the model. 

Table 1: Segmentation results of different networks. 

Model JAC/% DICE/% ACC/% SEN/% SPE/% 

U-Net 68.93 78.98 90.37 83.45 96.43 

R2U-Net 74.09 82.47 92.14 84.58 96.34 

DA-Net 75.37 84.37 93.06 82.16 98.49 

ours 78.86 86.92 94.61 86.75 96.28 
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As we can see from Table 1, the method proposed in this article achieves the best segmentation 

performance on skin lesion areas, achieving the maximum values of Jaccard index, Dice coefficient, 

accuracy, and sensitivity of 78.86%, 86.92%, 94.61%, and 86.75% respectively. In terms of Dice 

coefficient, our method outperforms U-Net, R2UNet, and DANet by 7.94%, 4.45%, and 2.25% 

respectively. In terms of accuracy, our method outperforms U-Net, R2UNet, and DANet by 4.24%, 

2.47%, and 1.55% respectively. Due to the noise interference and blurred lesion boundaries 

commonly found in the ISIC 2017 dataset, U-Net and R2UNet suffer from excessive feature 

information loss, resulting in low segmentation accuracy and phenomena of over-segmentation and 

under-segmentation in the segmentation results. 

Figure 6 demonstrates an example of segmentation results comparing U-Net, R2UNet, DANet, 

and our proposed method. As shown in the figure, the segmentation results of U-Net and R2UNet are 

relatively poor with insufficient refinement in the segmentation boundaries. Although DANet has 

clearer boundaries compared to the previous two methods, its accuracy is still low. By incorporating 

attention mechanisms, our proposed method can improve the accuracy and boundary segmentation 

precision of skin lesion areas. 

 

Figure 6: Instance of segmentation. 

 

Figure 7: Different networks image segmentation results. Red line: ground truth; Green line: 

different networks image segmentation results. 

The segmentation results of all networks are shown in Figure 7. On one hand, the compared other 

networks exhibit varying degrees of over-segmentation and under-segmentation phenomena, and 

have lower accuracy in segmenting skin lesion images with blurry boundaries. As shown in Figure 

7, in Case 1, 2, 4, and 5, U-Net has obvious under-segmentation, while R2UNet has obvious over-

segmentation, and the proposed method has fewer occurrences of these two situations, with more 
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obvious improvement in segmentation accuracy. Case 2 has the most obvious mis-segmentation of 

the skin lesion area. On the other hand, due to the low contrast of skin lesion images, it is difficult to 

accurately segment boundaries, as shown in Case 3 and 4. DANet introduces a dual attention 

mechanism on the basis of U-Net, which improves the accuracy of boundary segmentation, but the 

effect is not significant. Especially in Case 3, the previous methods have insufficient refinement of 

the boundary segmentation. Overall, the proposed method can effectively improve the above two 

problems, and compared to other models, it has better segmentation results and accuracy, closer to 

the true labels. 

4. Discussion 

This section conducted 5 sets of ablation experiments on the ISIC 2017 dataset using the original 

U-Net network as the baseline model (Model 1). Model 2 added SE convolution blocks to Model 1; 

Model 3 further incorporated DRR modules based on Model 2; Model 4 introduced FAM modules 

on top of Model 1. Models 2, 3, and 4 aimed to assess the performance improvement of skin lesion 

image segmentation with the proposed optimization modules, including SE blocks, DRR connections, 

and FAM. Model 5 represents the final model used in this paper. The results of the ablation 

experiments are presented in Table 2. 

From Table 2, we can observe that compared to Model 1, Model 2 has improved performance 

across all three evaluation metrics, indicating that the proposed SE convolution block has a significant 

impact on skin lesion segmentation accuracy. Model 3, which incorporates the DRR connection on 

top of Model 2, sees a further substantial improvement in all three metrics, with the JAC and DICE 

showing the most significant gains of 9% and 3.15% compared to Model 1. This verifies that the SE-

DRR module effectively extracts features and enhances useful information for better network training 

and segmentation results. Model 4 shows a more pronounced improvement in accuracy compared to 

other models, and analysis of segmentation results indicates that the FAM module effectively 

addresses boundary blurring in images. This further confirms that the module has a significant impact 

on feature fusion. Model 5, which integrates all three modules, achieves the best performance across 

all evaluation metrics, with ACC reaching its maximum value. Compared to the baseline network, it 

has improved accuracy by 4.24 percentage points, indicating that the proposed network generates 

more accurate segmentation results that are closer to the true labels and outperforms other models. 

This verifies the effectiveness of the proposed network modifications for skin lesion segmentation. 

Table 2: Ablation experimental results on ISIC 2017 dataset. 

Improvement measures Evaluation indices 

(%) 

U-Net Add SE Add DRR 

Connection 

Add FAM JAC DICE ACC 

√    68.93 78.98 90.37 

√ √   75.81 83.76 92.98 

√ √ √  77.93 86.14 93.52 

√   √ 76.57 85.48 94.05 

√ √ √ √ 78.86 86.92 94.61 

5. Conclusion 

This article addresses the issues of low feature fusion efficiency, information loss, and lack of 

connection between local and global information in skin lesion image segmentation, resulting in low 

accuracy. An improved dense recursive residual U-Net (IDR2U-Net) for skin lesion image 
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segmentation is proposed. Through ablation experiments and comparative experiments, it is shown 

that the proposed network outperforms other networks in performance evaluation metrics and skin 

lesion segmentation results. The proposed network not only promotes feature fusion between the 

encoder and decoder, but also enhances the correlation between global and detailed information 

features, providing a reference for computer-aided diagnosis of skin lesion areas and guidance for 

other medical image segmentation tasks. 

Due to the low contrast and extremely blurred boundaries of skin lesion images, the obtained 

segmentation results are not ideal, indicating that there is still room for improving the accuracy of 

skin lesion image segmentation. Preprocessing of skin lesion images, such as enhancing and 

denoising, can be further explored to prepare for improving the overall performance of segmentation. 

In future research, more advanced deep learning methods can be applied to skin lesion region 

segmentation to further optimize the segmentation effect. 
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