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Abstract: Esophageal cancer is one of the eight most common malignant tumors, with high 

incidence and mortality rates. Most patients are already in the advanced or late stage at the 

time of diagnosis, missing the best treatment period and resulting in extremely poor 

prognosis. Factors affecting the prognosis of esophageal cancer include clinical staging, 

lymph node status, and pathological type. Early diagnosis and personalized treatment plans, 

as well as controlling the risk factors for esophageal cancer, can effectively improve the 

prognosis of patients. Therefore, early diagnosis and treatment of esophageal cancer have 

become extremely important. This paper proposes a model that comprehensively predicts 

lymph node metastasis status through multi-level image features. It utilizes sparse 

self-encoded feature fusion networks to process high-dimensional features from different 

levels, including machine vision features, imaging genomics features, and perceptual 

features. The model is constructed using statistical methods and experimentally verified for 

its discriminative ability, identification capability, and clinical practicality. 

1. Introduction 

Currently, malignant tumors have become one of the major public health threats to human health, 

posing a serious threat to life and health. According to the 2018 Global Cancer Report published by 

the International Agency for Research on Cancer of the World Health Organization in the 

authoritative journal "CA Cancer J Clin" [1], in 2018, there were a total of 18.1 million new cases 

of cancer globally, with 9.6 million new deaths. Esophageal cancer ranked ninth, further increasing 

the global burden of cancer. The incidence of cancer in China remains high. According to the 2019 

National Cancer Report released by the National Cancer Center [2], in 2015, there were 3.929 

million new cases nationwide, with 2.338 million deaths, and esophageal cancer ranked fifth. 

Therefore, early diagnosis and treatment of esophageal cancer are particularly important. A large 

number of clinical studies have confirmed that controlling the risk factors for cancer reasonably is 
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an effective way to reduce the incidence and mortality rates [3]. Standard and accurate diagnosis, 

personalized treatment plans, can effectively improve patients' survival time and quality of life. 

Compared with the five-year survival rate of patients with lymph node metastasis, the five-year 

survival rate of patients without lymph node metastasis is longer. Among patients with lymph node 

metastasis, the number of lymph node metastases is closely related to the survival rate. Generally, 

the more lymph node metastases, the shorter the survival time [4]. At the same time, the status and 

number of lymph node metastases directly affect the choice of surgical methods. Therefore, 

preoperative accurate diagnosis of lymph node metastasis status helps to choose a reasonable 

treatment method and predict prognosis. This article addresses the clinical problem of the difficulty 

in determining whether lymph node metastasis has occurred before esophageal cancer surgery, and 

proposes a multi-level imaging feature comprehensive prediction model for lymph node metastasis. 

It constructs a sparse autoencoder feature fusion network to process high-dimensional features from 

different aspects such as machine vision features, imaging genomics features, and perceptual 

features, further selects a feature set related to lymph node metastasis status, constructs a model 

using statistical methods, and comprehensively evaluates the model's discriminative ability, 

identification ability, and clinical utility. 

2. Deep learning features 

The features of radiomics and machine vision are limited, only reflecting some characteristics of 

the tumor area, only reflecting the superficial characteristics of the tumor, such as the radiomics 

features, only reflecting the part that can be described by a formula, and ignoring the part of the 

features that cannot be described by a formula; while the machine vision features, to a certain extent, 

compensate for the limited number of features defined in radiomics, but they are still superficial 

features. Therefore, to obtain more comprehensive information about the tumor area, it is necessary 

to explore its deep features and explore the characteristics of tumor heterogeneity at a deeper level. 

The extraction of deep learning features in this paper is achieved through deep convolutional 

neural networks. Generally, there are two sources of deep convolutional neural network models. For 

data with sufficient training samples and corresponding labels, a network model can be trained. For 

data with a small amount of data or insufficient annotated data, such as training a network model 

that is prone to overfitting, transfer learning or data augmentation can be used. Since it is difficult to 

obtain preoperative CT image data of esophageal cancer studied in this paper, the sample size is 

limited and not sufficient for training network models, so the transfer learning method is adopted 

for the extraction of deep features. The network model structure and parameters of this paper are 

shown in Figure 1. 

 

Figure 1: Flowchart of deep learning feature extraction 
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This text uses a pre-trained network model CNN-Fb [5] as a deep feature extractor. CNN-F 

consists of five convolutional layers (Conv1-5) and three fully connected layers 

(fully-connected1-3), with pooling layers following conv1, conv2, and conv5. CNN-F is a network 

model trained on the ILSVRC-2012 dataset, with training parameters including: momentum: 0.9; 

weight decay: 5×10−4; initial learning rate: 0.01 and reduced by 10 times when validation error 

stops decreasing; dropout: 0.5; during training, stochastic gradient descent (SGD) is used to adjust 

network parameters. The trained model is transferred to the preoperative CT lymph node metastasis 

dataset in this paper, used as a feature extractor for deep feature extraction. 

The process of deep feature extraction is as follows: the input image of CNN-F is a three-channel 

224×224 picture, while medical images encoded in DICOM format are single-channel grayscale 

images with a wider grayscale range (16 bits). In order to align with the input channels of the 

pre-trained model, the following operations are performed on the CT images. First, the slice with 

the largest tumor area is selected from each patient's CT slice, and the tumor is manually segmented 

along the tumor boundary (excluding air in the tumor). Then, the segmented tumor area is cropped, 

with the cropping border encompassing the entire tumor area, and the cropped area is resized back 

to 224×224 using bicubic interpolation. Finally, the adjusted single-channel image is encoded as a 

three-channel image. At this point, it meets the input requirements of the model. As a feature 

extractor, the last output layer of the CNN-F model (fully connected layer 8) is removed, and deep 

features can only be computed through forward propagation and extracted from fully connected 

layer 7. 

3. Design of sparse autoencoder network 

The sparse autoencoder network introduced in this article is used for the overall framework of 

feature fusion, as shown in Figure 2. 

It mainly includes three steps: (1) Data cleaning. For the extracted imaging omics features, deep 

features, and visual features mentioned above, inter-group consistency detection is first performed 

to remove features with low repeatability; then the remaining features are normalized. (2) Building 

the autoencoder network structure. For the standardized features after data cleaning, a high- to 

low-dimensional mapping autoencoder network structure is constructed. (3) Extracting fused 

features. The low-dimensional features from step two are extracted for model construction, further 

evaluating the model's performance in predicting the preoperative lymph node metastasis status. 

 

Figure 2: Flowchart of feature fusion 

3.1 Design of sparse autoencoder network model structure 

The structure of the sparse autoencoder network in this article is shown in Figure 3. The network 

structure consists of an input layer, three hidden layers, and an output layer. After data cleaning, 

4004 features are used as the input to the autoencoder network. In order to represent the nonlinear 

relationships between the data and improve the model's expressive power, three hidden layers are 

designed with the numbers of neurons in each hidden layer being {2048, 1024, 256}. The output 
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consists of 64-dimensional features after dimensionality reduction. 

 

Figure 3: The structure of the sparse autoencoder network 

Autoencoders realize high-dimensional feature-to-low-dimensional mapping, including: (1) 

Network model pre-training: When there are many hidden layers in the model, the network training 

process may encounter challenges such as local optimal solutions and overfitting. In this chapter, 

we use a layer-by-layer greedy algorithm to individually train each layer of the network, ultimately 

obtaining the parameters for each layer. After cleaning and standardizing the data, we input it into 

the autoencoder network. In the first layer, we obtain the network weights 𝑤(1) = [𝑤(𝑙,1), 𝑤𝑙,2 ⋯ ] 

and bias 𝑏(1) = [𝑏(𝑙,1), 𝑏𝑙,2 ⋯ ]. We then save the network weights and biases of the first layer, and 

through the activation function, activate the output of the first layer to serve as the input for the 

second encoder. We then train the second encoder separately, obtaining its weights 𝑤(2) =

[𝑤(2,1), 𝑤2,2 ⋯ ] and bias 𝑏(2) = [𝑏(2,1), 𝑏2,2 ⋯ ], and save these weights and biases. This process 

continues until all layers are trained and all parameters are obtained. For the weights and biases of 

each layer, they can be represented as follows: 

𝑤(1) = [𝑤(𝑙,1), 𝑤𝑙,2 ⋯ ]                            (1) 

𝑏(1) = [𝑏(𝑙,1), 𝑏𝑙,2 ⋯ ]                             (2) 

Where 𝑙 denotes the number of layers. 

Taking into account the trained parameters, the weights and biases of the entire network are as 

follows: 

𝑊 = [𝑤(1), 𝑤(2), ⋯ , 𝑤(𝑙)]                           (3) 

𝑏 = [𝑏(1), 𝑏(2), ⋯ , 𝑏(𝑙)]                             (4) 

(2) Parameter fine-tuning: According to the principle of minimizing the error between input data 

and network reproduction data, fine-tune the entire network for parameters W and b using error 

backpropagation algorithm. 

1) Forward propagation, calculating the output values ℎ𝑘
(1)

= {ℎ𝑘
(1)

, ℎ𝑘
(2)

, ⋯ , ℎ𝑘
(𝑙)

}of each hidden 

layer and the output layer 𝑋𝐽̂. 

2) For the output layer, calculate its error term 𝛿𝑙+2 = −(𝛻ℎ𝑙+2𝐽)𝑓′(𝑧𝑖
(2)

). 

3) Hidden layer: 𝛿𝑙 = ((𝑤𝑙)𝑇𝛿𝑙+1)𝑓′(𝑧𝑖
(𝑙)

). 

4) Backward differentiation: 𝛻𝑊𝑡𝐽(𝑊, 𝑏) = 𝛿𝑙+1(ℎ𝑙)𝑇, 𝛻𝑏𝑡𝐽(𝑊, 𝑏) = 𝛿𝑙+1 
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3.2 Clinical Model Construction and Evaluation Indicators 

(1) Model Construction 

Before constructing the model, the features were extracted from the bottleneck layer first and the 

Maximum Relevance Minimum Redundancy (MRMR) algorithm was used to rank the features 

from high to low.  

𝑚𝑎𝑥(𝐷 − 𝑅) = 𝑚𝑎𝑥 {
1

|𝑆|
∑ 𝐼(𝑥𝑖; 𝑐)𝑥𝑖∈𝑆 −

1

|𝑆|2
∑ 𝐼(𝑥𝑖; 𝑥𝑗)𝑥𝑖,𝑥𝑗∈𝑆 }           (5) 

Where S represents the subset of target features, and I represents mutual information. By 

maximizing the correlation between features and labels while minimizing the correlation between 

features, the optimal features are selected. The number of key features used to build the model is 

determined by 10-fold cross-validation C-statistics. The selected key features are used to build the 

model using logistic regression 𝑓(𝑥) = 1/(𝑒𝑥𝑝(−𝑥)), and are evaluated on internal and external 

validation sets. 

(3) Evaluation Indicators  

In order to comprehensively evaluate the performance of the constructed model, a 

comprehensive evaluation is conducted from the overall performance of the model, the model's 

ability to distinguish between the lymph node metastasis status of esophageal cancer, and the 

clinical practicality of the model. 

1) Overall performance evaluation of the model 

The Brier score is used to evaluate the overall performance of the model. The Brier score is used 

to measure the consistency between the observed event outcome and the predicted probability of the 

outcome. In this paper, it refers to the consistency between the predicted probabilities of lymph 

node metastasis being positive or negative and the actual outcomes. 

𝐵𝑟𝑖𝑒𝑟𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
∑ (𝑦𝑖 − 𝑝𝑟𝑜𝑏𝑖)2𝑁

𝑖=1                        (6) 

Where the variable 𝑦𝑖  represents the actual occurrence of sample 𝑖 , where a transition 

represents occurrence with a probability of 1, and non-occurrence with 0. The variable prob 

represents the model's predicted probability for sample i. 

2) Model Discrimination and Calibration 

Discrimination measures the model's ability to distinguish between lymph node metastasis and 

non-metastasis. This is typically evaluated using the area under the receiver operating characteristic 

curve (AU-ROC) or the C-index. The AU-ROC (or C-index) ranges from 0.50 to 1.00, with a higher 

value indicating stronger discrimination. Calibration measures the model's predictive ability on 

unknown data, often assessed using the Hosmer-Lemeshow (H-L) test, which examines the degree 

to which the observed lymph node metastasis ratio matches the predicted ratio relative to the 

predicted risk percentage. 

3) Clinical Utility 

This evaluates the practical benefits the model can bring to clinical practice or patients. It 

primarily uses methods such as the net benefit curve and decision curve analysis. 

4. Clinical Model Evaluation 

(1) Overall Performance of the Clinical Model 

The overall performance of the lymph node metastasis prediction model is shown in Table 1. The 

constructed model can satisfactorily predict the lymph node metastasis status. The model's ability to 

distinguish between lymph node metastasis and non-metastasis reached 0.856 (training set), 0.838 

(internal validation), and 0.814 (external validation), and the Hosmer-Lemeshow test confirmed that 
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the model has predictive significance. 

Table 1: Indicators for the overall evaluation of the model 

 Training set Internal validation External validation 

Overall 

Brier 

0.151 0.172 0.186 

Discrimination 

C-index 

0.856 0.838 0.814 

Calibration 

H-L test 

0.538 0.522 0.058 

(2) Clinical practicability evaluation 

In clinical research, traditional diagnostic test indicators such as accuracy, sensitivity, specificity, 

and the area under the ROC curve only measure the diagnostic accuracy of the predictive model and 

do not consider the clinical utility of the model constructed. Decision curve analysis (DCA) serves 

as a simple and intuitive way to evaluate clinical predictive models, diagnostic tests, molecular 

biomarkers, etc., effectively integrating patient or decision maker preferences. As shown in Figure 4, 

the horizontal axis represents the threshold probability. In the assessment of lymph node metastasis 

risk, if a patient is diagnosed with a probability of lymph node metastasis denoted as Pi, when Pi 

reaches a certain threshold Pt, they are diagnosed as positive (i.e., metastasis), and corresponding 

treatment measures are taken clinically. At this point, some patients will benefit from the treatment, 

while others will suffer losses due to the treatment, i.e., they will not benefit. The vertical axis 

represents the net benefit after weighing the pros and cons. The red curve in the figure represents 

the clinical diagnostic model constructed in this study, and the remaining two curves represent two 

different extreme scenarios: the horizontal line represents the net benefit level of not treating all 

patients when all patients are negative for lymph node metastasis, while the slanted line represents 

the benefit situation when all patients are positive for lymph node metastasis and receive 

corresponding treatment. 

 

Figure 4: Assessment of Clinical Utility - Net Benefit Curve 

From the figure, it can be seen that the constructed model is far from the two extreme scenarios, 

indicating that the model has practical value. Specifically, to interpret the marked points on the 

graph: assuming 60% of the predicted probability is determined as lymph node metastasis and 

corresponding treatment is administered, then among 100 patients using the constructed model, 40 

people will benefit from the treatment measures, while no patients will benefit if all patients receive 

corresponding treatment (gray slanted line) or if no measures are taken (gray horizontal line). 

Therefore, it can be seen that the model constructed in this study can to some extent benefit patients 

from the corresponding treatment measures. 
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5. Conclusion 

The main challenge in the diagnosis and treatment of esophageal cancer is the inaccurate clinical 

staging and the difficulty in determining the status of lymph node metastasis, which affects the 

decision-making for treatment. The status of lymph node metastasis is crucial for treatment 

planning and prognosis prediction in resectable esophageal cancer. Accurate lymph node dissection 

can alleviate patient suffering, reduce local recurrence, and improve survival rates. This study 

addresses the clinical problem of predicting lymph node metastasis in esophageal cancer before 

surgery. We used autoencoder networks to integrate high-dimensional feature data and selected a 

highly correlated feature set related to lymph node metastasis. Statistical methods were used for 

modeling, and in addition to conventional evaluation metrics, we also explored the model's clinical 

utility. This research primarily aims to address the difficulty in predicting lymph node metastasis in 

clinical practice. 
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