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Abstract: SLAM refers to the problem of simultaneous localization and mapping (SLAM) 

of mobile robots in unknown environments. With the development of robot technology and 

artificial intelligence technology, SLAM has become an important technology and is widely 

used in all aspects of production and life. The importance of SLAM is self-evident for 

autonomous vehicles. SLAM is a very strange field for most people. In the wave of 

artificial intelligence, more and more enterprises and universities have invested in the 

research of visual SLAM. In this paper, we will introduce several classic visual SLAM 

algorithms and discuss their applications in the robot field, propose some problems in the 

current SLAM research field, and look forward to the future development direction of 

visual SLAM research. 

1. Introduction 

SLAM technology is an important part of mobile robot technology. It can obtain 3D point cloud 

data in unknown environment, and finally realize robot positioning and map building on 3D point 

cloud data. Its application prospect is very broad. The history of SLAM can be traced back to the 

1980s. At the end of the 1980s, the representation and estimation of spatial uncertainty by Smith[1], 

Cheeseman and Durrant Whyte[2] became the beginning of SLAM research. A series of probabilistic 

filtering methods based on lidar sensors and subsequent graph optimization methods were initially 

developed, mainly including EKF (Extended Kalman Filter)[3], RBPF (Particle Filter)[4], 

Gmapping[5], Karto SLAM[6] and Cartographer[7]. Among them, the filtering based laser SLAM[5] 

proposed by Giorgio Grisetti et al. in 2007 mainly uses the Gmapping algorithm, and the graph 

optimized laser SLAM algorithm[7] opened by Google in 2016 mainly uses the Cartographer 

algorithm. 

At the beginning of the 21st century, Montemerlo et al. first combined Rao Blackwelled PF 

(particle filter) with EKF to carry out research on robot SLAM, which was later the open-source 

FastSLAM algorithm[8]. After that, the laser SLAM has been continuously optimized and improved. 

However, as more and more studies have found that the laser SLAM has limitations such as high 

cost, high energy consumption, low price of lidar accuracy, filter based laser SLAM cannot perform 

loopback detection, large linear error accumulation, and difficulty in maintaining the waypoint 

based covariance matrix, which are difficult to promote. 
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With the development of artificial intelligence technology and computer hardware, the research 

in SLAM field has gradually entered a climax. In the 1990s, SLAM systems based on computer 

vision and machine learning technology began to rise. In 2007, Andrew et al. proposed the first pure 

vision SLAM system Mono SLAM[9]. Mono SLAM is the first visual SLAM system based on 

monocular camera, which mainly uses sparse feature points of images to generate maps. The 

appearance of this method makes up for many defects of laser SLAM, and has been rapidly applied 

in the fields of robots, unmanned driving, etc. In the following ten years, with the rapid 

development of computer hardware and software technology, the visual SLAM algorithm is also 

constantly improving and developing. 

In the 21st century, the visual SLAM technology has developed rapidly. On the one hand, image 

recognition, semantic segmentation and other algorithms based on deep learning have become the 

most commonly used methods in the field of visual SLAM; On the other hand, the vision SLAM 

system based on multi-sensor fusion is also constantly improving and optimizing. In this context, 

many scientists and engineers began to try to combine deep learning with SLAM. Then a series of 

SLAM algorithms based on deep learning emerged and gradually became the mainstream algorithm 

in the SLAM field. 

2. Fusion SLAM of laser radar and vision 

Lidar can provide high-resolution environmental information at a relatively long distance 

(>100m), but lidar is a "passive" sensor relative to the camera, which cannot obtain visual 

information. Therefore, the combination of laser radar and vision sensor can improve the robot's 

positioning and navigation ability. 

As early as 2008, Peyman Moghadam et al. fused the measured values of the stereo vision 

camera system and the 2D laser rangefinder[10] to dynamically plan and navigate mobile robots in a 

cluttered and complex environment, verifying the effectiveness of the proposed fusion strategy of 

laser radar and stereo vision in mobile robot navigation. After that, SLAM based on the fusion of 

laser radar and vision is gradually applied and studied. 

In 2015, Ji Zhang et al. proposed a general framework that combines visual odometer and laser 

radar odometer[11] to improve robustness to radical movements and temporary lack of visual 

features. In 2018, for the tracking part of SLAM, et al. used RGB-D camera and 2D low-cost laser 

radar to complete robust indoor SLAM through mode switching and data fusion[12]. In 2020, Lili 

Mu et al. proposed a new synchronous positioning and mapping (SLAM) method based on graph 

optimization, combined with LiDAR, RGB-D camera, encoder and inertial measurement unit 

(IMU)[13]. In 2022, Jun Yin et al. proposed a new 3D laser radar assisted monocular vision 

synchronous positioning and mapping (LAMV-SLAM) framework[14] for mobile robots in outdoor 

environments. In the same year, Xiaolong Cheng et al. proposed a semantic segmentation odometer 

and mapping method based on the visual fusion of lidar and camera data[15], which is used for 

real-time motion state estimation and advanced understanding of the surrounding environment.  

In 2023, Sheng 'En Li and others proposed a large scene construction scheme of vision and 

LiDAR fusion[16] in view of the limitations of SLAM system using a single sensor, reducing the 

impact of low precision and low recall of closed-loop detection point cloud on SLAM construction 

accuracy. In the same year, Matteo Frosi et al. proposed a D3VIL-SLAM, which extends the 

existing LiDAR based SLAM system ART-SLAM[17] to include inertial and visual information, 

which can generate highly detailed 3D maps while maintaining real-time performance. In July 2023, 

Zexi Liu et al. proposed a relocation method of vision and laser radar sensor fusion[18], which 

greatly improved the relocation performance. In 2023, Florian Sauerbeck et al. proposed a new 

method to integrate 3D LiDAR depth measurement into the existing ORB-SLAM3 based on the 
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RGB-D mode[19] to improve the system running time. 

However, this method has some problems. First, using lidar and vision fusion usually requires 

more expensive sensor hardware. The high cost of lidar and high-resolution visual sensor, the 

possible limitation of sensing range and angle, and the need for greater computing power make this 

fusion method not widely used at that time. Even so, due to the complementarity of laser radar and 

visual sensor, the fusion method is suitable for various environments, and can improve the 

performance and stability of SLAM system in complex environments. Therefore, it is irreplaceable 

in many applications. 

3. Camera based visual SLAM 

As a typical application of SLAM, the camera based visual SLAM (Computer Vision and 

Mapping) algorithm is very simple in principle and process, has high real-time and robustness, and 

is easy to implement. Camera based visual SLAM mainly refers to the simultaneous localization 

and map building of mobile robots based on monocular cameras. The monocular vision SLAM 

algorithm uses a monocular camera as a sensor to reconstruct the three-dimensional space through 

the monocular camera, without using other sensors, such as gyroscope, accelerometer, GPS, etc. 

Compared with the traditional binocular SLAM algorithm, monocular SLAM has obvious 

advantages in system structure, robustness and accuracy. 

In 2007, Andrew et al. proposed the first visual SLAM system based on monocular camera[9]. 

Since then, people began to apply monocular cameras to SLAM technology. The vision SLAM 

algorithm based on monocular vision includes two parts: back-end optimization and front-end 

mapping. The back-end optimization part mainly includes camera calibration, feature point 

extraction and matching, feature point matching selection and optimization after feature point 

matching, pose solution and so on. The front-end mapping part mainly includes pre-processing the 

two-dimensional map and modeling the environment. 

In 2014, Christian Forster et al. proposed a semi direct monocular vision mileage calculation 

method, called SVO (semi direct vision odometer), and released it as open source software[20]. 

In 2015, Ra ú l Mur Artal et al. proposed a feature-based monocular synchronous positioning and 

mapping (SLAM) system[21] (ORB-SLAM) for real-time operation in small and large indoor and 

outdoor environments. In 2017, Jakob Engel et al. proposed a visual odometer method based on 

novel, high-precision sparse and direct structure and motion formula - direct sparse odometer 

(DSO)[22]. In 2018, David Schubert et al. proposed a new direct monocular VO method combined 

with the roller shutter model, expanding the direct sparse odometer[23]. However, as the monocular 

vision based SLAM algorithm directly uses monocular cameras for data acquisition, its accuracy is 

relatively low. In addition, it is difficult to calibrate the monocular camera because a single camera 

sensor is used for data acquisition. Therefore, the vision SLAM algorithm based on monocular 

vision has not been widely used. 

In recent years, vision based SLAM algorithm has been greatly developed. In addition to several 

classic algorithms introduced above, there are many algorithms for positioning and mapping based 

on visual information (such as IMU, GPS). In 2013, Simon Lynen et al. proposed a general 

framework, called Multi sensor Fusion Extended Kalman Filter (MSF-EKF)[24], which can handle 

delay, relative and absolute measurements from an theoretically unlimited number of different 

sensors and sensor types, while allowing online self-calibration of the sensor suite. In 2015, 

Michael Bloesch et al. proposed a monocular vision inertial mileage calculation method. This 

algorithm achieves accurate tracking performance by directly using the pixel intensity error of 

image patches[25], while showing very high robustness. In 2018, Tong Qin et al. proposed a robust 

and multi-functional monocular vision inertial state estimator[26], which integrates monocular 
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camera and IMU, and fuses visual and inertial information through tight coupling, realizing robust 

positioning and navigation. In the same year, Xiang Gao et al. proposed the expansion of direct 

sparse odometer (DSO) in monocular vision SLAM system with closed-loop detection and attitude 

map optimization (LDSO)[27], which combines IMU information and has good real-time 

performance and robustness. In May of the same year, Pan Zeng et al. proposed a VIO weighing 

Euler pre integration method based on monocular camera and IMU[28]. These SLAM algorithms 

based on visual information have good performance in many scenarios. 

At present, the realization of SLAM based on visual information has become a trend and trend. 

At present, most intelligent driving vehicles are based on monocular vision technology to achieve 

map building and positioning. It is believed that in the future, SLAM algorithm based on visual 

information will become more and more popular. 

4. Visual SLAM based on deep learning 

After the rise of deep learning, we can learn how to extract key information from images by 

training a model. This is a big challenge, because SLAM is perceived in an unknown environment, 

so the map is dynamic and often incomplete. Therefore, using the deep learning method can help us 

better understand the environment. For example, when we mark an object as "green", we can 

predict the color of the object through the depth learning model. Using this information, we can 

make it easier for robots to reach their destinations. 

Deep learning algorithm is the mainstream recognition algorithm in the current computer vision 

field. It relies on multi-layer neural network to learn the hierarchical feature representation of 

images. Compared with traditional recognition methods, it can achieve higher recognition accuracy. 

In the field of visual SLAM, hierarchical image feature extraction methods, represented by deep 

learning technology, have emerged in recent years, and have been successfully applied to SLAM 

inter frame estimation and closed-loop detection. Based on the classification method of the existing 

literature, the semantic information is divided into three categories, which are the low-level 

semantic information of line and surface, the pixel-level or image-level semantic information of 

object category, and the attribute semantic information of object 's ' moving ' and ' static ' state. 

In 2013, R F. Salas Moreno et al. demonstrated a new object oriented 3D SLAM framework, 

which takes advantage of prior information: many scenes are composed of repeated, special 

category objects and structures[29]. In 2017, Mc Cormac et al. proposed Semantic Fusion, which 

uses the Elastic Fusion algorithm to provide long-term dense correspondence between indoor 

RGB-D video frames[30], combined with convolutional neural network (CNN) to allocate labels 

from multiple pixel points, and used Bayesian inference method and conditional random field 

method to calculate and fuse into an effective map. In 2017, Sen Wang et al. proposed a visual 

odometer using a deep recursive convolutional neural networks (RCNNs) monocular VO 

end-to-end framework[31], which verified that end-to-end deep learning technology can become a 

feasible complement to traditional VO systems. 

In 2018, Berta et al. proposed Dyna SLAM, which added a target detection model[32] on the basis 

of ORB-SLAM2, met the detection requirements of dynamic targets, repaired the images occluded 

by dynamic objects, and generated dense maps in static environments. In 2019, Carnegie Mellon's 

Yang S et al. proposed Cube SLAM, generated high-quality three-dimensional area suggestion box 

from two-dimensional bounding box and vanishing point random sampling, and established object 

level map without prior object knowledge model[33]. In the same year, Nicholson L and others from 

Queensland University of Science and Technology in Australia constructed the Quadric SLAM 

system[34], which can directly estimate the conic curve from the rectangular box detected in 2d, and 

then construct the ellipsoid constraint to clearly express the position, direction, size and orientation 
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information of objects. In 2021, Weixiang Shen et al. proposed a semantic mapping algorithm based 

on improved YOLOv5[35]. 

It can be seen that visual SLAM based on deep learning has many advantages, which is very 

useful for feature matching and scene understanding in visual SLAM. With the improvement of 

hardware performance and the optimization of deep learning algorithms, some deep learning SLAM 

methods have made significant progress in real-time performance, making them more suitable for 

practical application scenarios. Therefore, visual SLAM based on deep learning is widely used in 

various fields such as automatic driving. 

5. Summary 

The visual SLAM algorithm has made great progress in recent years, and has been widely used 
in many robot fields. The main principle is to extract and match the feature points using the images 
taken by the camera, and then optimize the feature points using the matching results to obtain 
accurate pose estimation. In this process, we usually use two methods: feature point extraction 
algorithm and feature point matching algorithm. The former uses the camera's internal parameter 
information, while the latter uses the camera's external parameter information. 

In general, the current visual SLAM algorithms are divided into two categories: feature point 
matching based algorithms and image processing based algorithms. The former is mainly for image 
feature extraction and matching, while the latter is for image processing. 

However, with the progress of technology, SLAM based algorithms are increasingly used in the 
field of robots. For example, visual SLAM technology has been widely used in the field of 
unmanned vehicles to achieve indoor positioning and navigation; In the field of UAV, visual SLAM 
is also widely used in autonomous flight control; In augmented reality (AR) and virtual reality (VR), 
visual SLAM can realize real-time modeling of the real world, thus improving the perception of 
augmented reality experience or virtual reality environment; In smart home and Internet of Things 
(IoT), visual SLAM can be used in smart home devices and Internet of Things sensors to help these 
devices perceive the environment, locate objects and conduct intelligent interaction, and improve 
life and work efficiency. 

In addition, vision SLAM in the future can also develop towards the integration of deep learning 
and traditional methods, multimodal data fusion, cross industry applications and other trends, as 
well as cope with more complex environments and challenges.  
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