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Abstract: For the analysis of irregular structures, an arbitrary high-order finite difference 

time-domain local time step based on non-uniform grids is proposed. Comparison with 

Finite Difference Time Domain, this new method based on non-uniform mesh weak the 

limit of the time-step size. For the new method allows different grids to interate with 

different time-step sizes. In order to perform fast and accurate electromagnetic analysis on 

the responsible problem, it is necessary to use multi-scale grids to segment the target. 

Using appropriate time steps to solve electromagnetic fields on different grids, achieving 

accurate and fast analysis of problems. Due to breaking through the limitation of grid size 

on time step size, the computational workload of the work is reduced. In addition, multi-

time steps are implemented by local time step and an arbitrary high order is added to this 

work to promise the accuracy of computation. This work has great value in practical 

application engineering. 

1. Introduction 

It has been proved that finite-difference-time-domain (FDTD) [1][2][3] method is an effective 

approach that can predict the field of electromagnetic interaction problem. The conventional finite 

difference time domain (FDTD) method is usually limited by computer memory and running time. 

In order to break these restrictions, we usually use sub-grid technology to reduce the size of the 

object. This technology decreases the amount of unknowns so that achieves greater performance. 

However it is usually difficult to guarantee the stability of this technology. Therefore, we choose 

non-uniform mesh technology to replace sub-grid technology. The stability of non-uniform mesh 

technology is similar to conventional FDTD(uniform-grid technology)[4] [5]. Non-uniform mesh 

technology and uniform mesh technology must satisfy the Courant-Friedrich-Levy (CFL) condition 

[6] when we use them. Consequently, the minimum size of cell determines the time-step size of the 

whole calculation. This leads the technology inefficient for the problems when involves fine scale 

dimensions, such as enclosure with slots [7]. In order to simulate the electromagnetic characteristics 

of thin slit accurately, the space increment must be smaller than the wavelength. Fine elements 

reduce the time-step size, which leads to an expensive computation in the conventional FDTD way. 

To weaken the limit of CFL on the time-step size of FDTD, an arbitrary high order difference 

method with non-uniform mesh on the time-step size is proposed. This new method adopts non-
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uniform mesh that would reduce the amount of calculation. Besides we use local time step between 

non-uniform mesh. In addition, the new approach is an arbitrary high order difference method, 

therefore the accuracy of the method can be adjusted by the order. 

2. Theory and formulation 

2.1. An Arbitrary High Order FDTD 

Maxwell's partial differential equations is transformed as below 
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Repeat the time derivative of (3), we obtain time derivative of each order of the electric and 

magnetic fields.  
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According to taylor series expansion (4), we can get  t tU . By iterating over time, we can the 

value of the electric and magnetic fields at any time point.  

In order to simulate target in infinite space, we apply Berenger Perfectly Matched Layer 

(PML)[8] to  absorb the electromagnetic wave in finite space(select PEC to cut off). 

The electric and magnetic fields iterate in PML through the below steps. 

The first step: H D , take xD   for example. 
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Then the iteration of ADER in PML is as 
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The other components of D are obtained by the cycle substitution of x , y  and z . 

The second step: D E , take xE   for example. 
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The third step: E B , take xB   for example. 
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The fourth step: B H , take xH   for example. 
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After the four steps, yH

t




, zH
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 are known. Then we can get the second-order time 

derivative of (6) as: 
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Repeat above step, we obtain  x , y  and z  components of 
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2

2t





H
. Therefore, we can 

get any order time derivative of D , E , B  and H . Through taylor series expansion (4), the next 

time step of D , E , B  and H  are  achieved. 

2.2. Non-uniform mesh  

x y

z

 

Figure 1: Sketch of the non-uniform mesh. 

In this work, the electric fields define at the midpoint of the edge of the Yee cell and magnetic 

fields define at the center of the face of the Yee cell.  

In order to simulation efficiently, more than two kinds of mesh sizes are used in computation (in 

Fig. 1). According to requirement of the target geometry and electromagnetic parameters, different 

sizes of gird are used in different regions.  

For convenience, H ' (the red point in Fig. 2) is added in non-uniform grid computing. 
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Figure 2: The electric field of non-uniform Yee cell. 

As is shown in Fig. 2, Yee cells are non-uniform in the Y  direction. y  of Yee cell  1i, j ,k  and 
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Take (12) into the first line equation of (1), then  
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Where c is dielectric parameters of point 
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According to (13), the iterative formula derivation of non-uniform  grid in X  direction and Z  

direction can be obtained. 
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Figure 3: The magnetic field of non-uniform Yee cell. 

As shown in Fig. 3, the solution of magnetic field of non-uniform grid and uniform grid are 

identical. Therefore, the iterative formula do not change.   

2.3. Local Time Step 

Local time step is used to accelerate ADER on non-uniform mesh. In simulation, we use 

different time steps ( t ) on mesh of different sizes. 

x y
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Figure 4: Local time step of non-uniform Yee cells. 

As is shown in Fig. 4, there are more than two time steps on the non-uniform Yee cell. The time-

step size of most Yee cells is 1t  and the time-step size of blue Yee cells in Z  direction is 

2t ( 2 1 2 3t t / i,i ,    ). Different Yee cells employ different time steps in computation. Large 

time-step size is adopted for large space cell size and little time-step size is adopted for little space 

cell size. This new method is more efficient than the FDTD method and the ADER method.  
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(From top to bottom, it indicates different time periods of the same grid. From left to right, it means 

different grids at the same time). 

Figure 5: Illustration of the local time step algorithm in space showing the space-time elements  
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As is shown in Fig. 5, it is assumed that one time step of coarse grid is equal to five time steps of 

fine grid. Therefore, the coarse grid is iterated by one step and the fine grid is iterated by five steps. 

The iteration of this method is completed in the following steps: 
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We apply 2m   in the operation of  (15) and 1m   in operation of (16). 

After this operation, we can iterate electric field and magnetic field through (1). 

2) As the yellow arrow shown in fig 5, we iterate the electric field at position 
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3) We iterate the electric and magnetic field at position 
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4) As the green arrow shown in fig 5, the value of magnetic field at time n+0.2 is obtained by 

interpolation at time n through (17), (18) and (19). 
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Loop the same way, we can obtain 

0 4 1 1

2 2

n .

zH i , j ,k  
  

 
,

0 4 1 1

2 2

n .

zH i , j ,k

t

  
   

 


,

0 4 1 1

2 2

n .

zH i , j ,k

t

  
   

 


,… 1 1 1

2 2

n

zH i , j ,k  
  

 
,

1 1 1

2 2

n

zH i , j ,k

t

  
   

 


,

2 1

2

1 1

2 2

n

zH i , j ,k

t

  
   

 


. 

Through the above steps, the iteration of electric field and magnetic field of adjacent Yee grids 

and different grids can be realized. 

2.4. Numerical Stability 

LTS-ADER method, the ADER method and the FDTD method are conditionally stable. The 

maximum time-step size in this method is determined by spatial increments x , y  and z . The 
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time-step sizes of LTS-ADER with non-uniform mesh are large than or equal to the time-step size 

of other method with uniform mesh. It is very useful to realize different time-step sizes in different 

space cell size with the LTS-ADER method.  

3. Numerical results 

The CPU has Intel core Q9500 and 8GB memory. The environment is based on the Fortran MPI. 

In order to demonstrate the accuracy and efficiency of the ADER-LTS, we give a numerical 

example. Fig. 6 schematically shows an enclosure with three different slots. 

 

Figure 6: Enclosure with three different slots. 

In Fig. 6, the length, width, and height of the enclosure are 30, 2, 6.2mm respectively. There are 

three slots on the front side of the enclosure. The size for the two thin slots is 24mm*0.1mm and for 

the wide slot, it is 24mm*2mm. An excitation source of Gauss pulse is located on the front of the 

enclosure. The Incident angle of 090= and 00= . An excitation source of Gauss pulse is located on 

the front of the enclosure. The center frequency of incident pulse is 150GHz and the pulse width is 

2.4ns. The grid size of FDTD is 0 2dx . mm, 0 2dy . mm and 0 02dz . mm. ADER-LTS has two grid 

sizes. The fine size is 0 2dx . mm, 0 2dy . mm, 0 02dz . mm and the rough size is 

0 2dx . mm, 0 2dy . mm, 0 2dz . mm. The fine gird is operated at the two thin slots, the other part 

uses the rough grid to compute. The time step size for the FDTD method is 
2 2 20 7 1 0 0002 1 0 0002 1 0 00002t= . / c / . / . / .   = 130 462 10.  s. There are two time step sizes for the 

ADER-LTS method. The time step size of fine gird is 130 462 10.   s and the time step size of the 

rough gird is 132 772 10.   s. 

Table 1: Result of Fdtd and Ader-Lts 

 Time consuming Totall cell 

ADER-LTS 2281.23s 64*204*94 

FDTD 21484.75s 64*204*850 
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Figure 7: Comparison of the electric field component zE calculated by FDTD and ADER-LTS 

methods. 
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In Fig 7, it shows the high precision of ADER-LTS. From the data of TABLE 1, ADER-LTS 

shows high computational efficiency. 

The third example is a dual-band bandpass filter (Fig 8), which is design for WLAN. The central 

frequencies of the two passband are designed at 2.35GHz and 5.37GHz. The dielectric constant and 

the thickness of the substrate is 9 8r .   and 1 524h . mm. It is realized by using a 50ohm input and 

output transmission line. 

y

z

3

Unit:mm

7

1.7

13.1

14

0.2

 

Figure 8: Circuit configuration of dual-band bandpass filter. 

The grid size of FDTD is 0 254dx . mm, 0 25dy .  mm and 0 025dz . mm. ADER-LTS has two 

grid sizes. The fine size is 0 254dx . mm, 0 25dy . mm, 0 025dz . mm (the red zone in fig 7) and the 

rough size is 0 254dx . mm, 0 25dy . mm, 0 25dz . mm. The time step size of fine gird is 130 826 10.  s 

and the time step size of the rough gird is 134 956 10.  s.  

Table 2: Result of Fdtd and Ader-Lts 

 Time consuming Totall cell 

ADER-LTS 127.61h 60*173*316 

FDTD 399.52h 60*173*1740 
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Figure 9: Comparison of FDTD simulated, ADER-LTS simulated and CST simulated results. 

In Fig 9, it shows the high precision of ADER-LTS. TABLE 2 shows the high computational 

efficiency of ADER-LTS. 

4. Conclusion 

This paper introduces a 3-D ADER-LTS for solving Maxwell’s equation. With non-uniform 

mesh, we use different time-step sizes in different spatial discretizations. The ADER-LTS method 
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not only can be used in the analysis of thin slots and some antenna, but also can be useful in other 

electromagnetic problems where both fine and electrically large structures are used.  
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