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Abstract: Digital twin technology is commonly applied in tunnel engineering to manage and 

design mechanical and electrical equipment. However, the geological data of the tunnel 

surrounding rock during construction can also be inferred using digital twin models, 

providing a reference for tunnel construction and stability analysis. First, the structural 

information of the tunnel face is obtained through 3D laser scanning and point cloud analysis, 

establishing a digital twin model of the tunnel face. Then, an intelligent classification model 

of the rock mass is established by combining the collected prior information of the rock mass 

with Bayesian networks and junction tree algorithms. Formulas are developed to correlate 

the rock mass deformation modulus with the classification standard GSI, RMR, and BQ. The 

deformation modulus of the rock mass is inferred based on the measured field information 

and empirical data using Bayesian inference combined with Markov Chain Monte Carlo 

simulation, achieving a posterior probability distribution. Finally, this method is applied to 

the Dongpo Tunnel of the Taihang Expressway, with an accuracy rate of over 85% for rock 

mass classification. The inferred parameters of the rock mass deformation modulus are 

obtained using the prior information provided by the rock mass classification. Finite element 

modelling is conducted based on the inferred geological information, preliminarily 

establishing that the stability of the surrounding rock mass in the Dongpo Tunnel is relatively 

good. 

1. Introduction 

With the development of tunnel engineering, the construction of high-difficulty and high-risk 

tunnel projects in complex geological and hydrogeological environments is increasing [1]. As the main 
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environmental medium of tunnel engineering, the rock mass plays a crucial role in tunnel stability, 

and it is necessary to understand the properties of the surrounding rock mass throughout the entire 

lifespan of the tunnel to rationally select construction methods, support design parameters, and 

maintenance plans [2]. 

The digital twin is a technology that models, simulates, and analyses physical objects in the real 

world through digital means. By using sensors, wireless communication, and cloud computing, real-

time data from real objects are collected and processed and compared and analysed with digital 

models [3]. With the gradual development of digitization in geotechnical engineering [4-5], the 

introduction of digital twin technology in tunnel engineering has been correspondingly researched. 

Lee [6] used BIM and GIS methods to establish a digital twin model of a tunnel for the detection, 

monitoring, and diagnosis of tunnel risks and abnormalities. Yu [7] used digital twin technology to 

monitor mechanical equipment failures in tunnels and successfully applied it to the Wenyi Road 

Tunnel in Hangzhou. Shen [8] used digital twin methods to establish a lighting environment model for 

tunnels to improve interior lighting design, which was applied to newly built tunnels in Hangzhou, 

reducing the accident rate to 3%. Currently, the application of digital twins mainly focuses on the 

design and management of tunnel machinery and equipment. In fact, after collecting the rock mass 

information required for digital twin modelling, the tunnel rock mass data can be evaluated and 

inferred based on the collected information, and a numerical analysis model of the tunnel can be 

established to calculate the mechanical characteristics of the tunnel and lining and analyse the stability 

of the tunnel rock mass [9]. 

Based on the tunnel digital twin model, there is an issue of insufficient rock mass information for 

rock classification. To address this, Zhou [10] constructed a rock mass quality evaluation and analysis 

model based on the Q-system classification method, combined with field measurement data and 

Bayesian networks. Xiao [11] established a method for determining the probability interval of the 

Geological Strength Index (GSI) using interval theory and Bayesian networks based on the 

quantitative relationship between rock block volume (Vb), joint surface coefficient (Jc), and GSI. 

The process of inferring rock mass parameters based on the tunnel digital twin model is stochastic, 

and commonly used empirical methods also have model uncertainties. Therefore, Cai [12] used Monte 

Carlo sampling to obtain the strength and deformation statistical parameters of a rock mass based on 

uncertainty and applied them to the probabilistic design of rock engineering. Sari [13] considered the 

uncertainty of inferred rock mass property parameters using a probabilistic approach and predicted 

the strength of the rock mass using a probabilistic spreadsheet model. Feng [14] used the Bayesian 

method to predict the elastic modulus of rocks based on their uniaxial compressive strength. Wang 
[15-16] adopted the Bayesian method to select and describe the uncertainty relationship between the 

uniaxial compressive strength and elastic modulus through regression models. 

Based on a summary of existing research, this study applies the digital twin model to infer the 

geological information of tunnel surrounding rock mass. Simultaneously, a Bayesian network is 

utilized to propose an empirical formula and data fusion algorithm for inferring rock mass parameters. 

The obtained geological information is then used to establish a numerical model to analyse tunnel 

deformation and stability. 

2. Tunnel face information acquisition 

Three-dimensional (3D) laser scanning technology instantaneously measures the spatial 3D 

coordinate values of a target object through the principle of laser ranging. By using the acquired 

spatial point cloud data, it can quickly establish a 3D visualization model of complex and irregular 

scenes. It has the advantages of high authenticity, high data sampling rate, high resolution, high 

accuracy, no time and space constraints, and easy postprocessing and output. 
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In this study, a Leica ScanStation P30 laser scanner was used to scan the tunnel face. The laser 

scanner was set up approximately 10 meters in front of the tunnel face, adjusted to a horizontal 

position, and fixed. The scanning accuracy and angle were set, and the tunnel face was scanned at a 

high density. When the scanning accuracy was set to 1.6 mm@10 m, it took approximately 2 minutes 

to complete the scanning of the entire tunnel face. 

 

Figure 1: Information extraction process of tunnel face 

After obtaining the point cloud information of the tunnel face using the 3D laser scanner, the 

automated rock mass information extraction method proposed in references [5] and [17-19] was applied. 

The point cloud format was converted (to PLY format) using CloudCompare, and Halcon was used 

for point cloud data preprocessing, resampling, denoising, and triangulation. Finally, the MATLAB 

program for automated rock mass information extraction was used to obtain the grouping information, 

spacing, joint inclination, pathline length, and roughness of the rock mass structural planes according 

to the process shown in Fig. 1. 

3. Geological information inference for the surrounding rock 

3.1 Intelligent classification of rock mass 

Table 1: Comparison of GSI, BQ, and RMR14 classification standards 

 
Ave 

Distance 

Num 

Group 

Trace 

Length 

Surface 

Condition 
UCS Water 

Slake 

Durability 

GSI √ √  √    

BQ √ √   √ √  

RMR14 √ √ √ √ √ √ √ 

Different rock mass classification methods consider different factors. The GSI method [20-21], BQ 

method [22], and RMR14 method [23-24] were selected for comparison, as shown in Tab. 1. It is difficult 

to evaluate multiparameter rock mass classification methods when there is insufficient rock mass 

information on site. 

Eleven basic parameters, including volume joint number Jv (joint average distance: AveDistance, 

joint group number: NumGroup), joint path length: TraceLength, structural plane condition: 

SurfaceCondition (roughness of structural plane: Roughness, weathering degree of structural plane: 
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Weathering, infilling properties of structural plane: Infilling), unconfined compressive strength: UCS, 

slake durability index: SlakeDurability, and groundwater distribution characteristics: Water, as well 

as the rock mass quality evaluation indicators GSI, BQ, and RMR14, were selected. Based on the 

rock mass quality information of 260 groups [25], the collected tunnel surrounding rock classification 

case data were input into the network model using Netica software. The rock mass classification 

evaluation model was obtained by using the expectation maximization algorithm to learn the 

parameter values of the nodes (Fig. 2). This process solidifies the empirical experience of rock mass 

classification and provides support for tunnel engineering rock mass classification. 

Based on this rock mass classification evaluation model, the conditional probability values of each 

node under given conditions can be obtained using the junction tree algorithm [26-27]. The specific 

steps are as follows: (1) establish a junction tree based on the existing Bayesian network; (2) use 

message propagation algorithms to transmit information along the junction tree; and (3) respond to 

results based on the given conditions. 

 

Figure 2: Rock mass classification evaluation model 

3.2 Parameter inference of rock mass 

Determining the deformation modulus of a rock mass on-site is time-consuming and laborious. 

When conducting reliable design for the underground structure of a rock mass, the probability 

distribution information of parameters is often needed. However, it is difficult to obtain meaningful 

statistical parameters from on-site test data. Therefore, in this section, Bayesian inference methods 

are introduced to consider empirical (prior) information from similar sites and use empirical formulas 

and on-site measured parameters to obtain the (posterior) probability distribution of the rock mass 

deformation modulus, guiding the selection of statistical parameters of the rock mass deformation 

modulus at engineering sites. 

3.2.1 Formulas for rock mass deformation modulus - Classification standard 

Combining commonly used rock mass quality evaluation methods, empirical formulas between 

the rock mass deformation modulus (Erm) and rock mass classification standards GSI, RMR, and BQ 

are established. To obtain universally applicable empirical formulas, engineering data are statistically 

analysed. Three commonly used models (linear, power-law, exponential) are used to describe the 

relationships between Erm-GSI, Erm-RMR, and Erm-BQ. The model parameters are optimized 

through the maximum likelihood method (Equation 1). Then, by comparing the values of the Akaike 
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Information Criterion (AIC) and Bayesian Information Criterion (BIC) [28], the performance of the 

models is evaluated to obtain the best formulas. The corresponding results are shown in Tab. 2. 
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where L(Θ) represents the likelihood function of the model corresponding to observed values 

(samples) of Erm. Erm,i represents the i-th observed value, μi represents the predicted mean of Erm 

based on the given classification standards (GSI, RMR, and BQ), and σt reflects the model error. 

Table 2: Erm-RMR,Erm-GSI,Erm-BQ experience formulas 

 Model Formula σt 

Maximum 

likelihood 

value 

AIC BIC Rank 

Erm-GSI 

Linear Erm = 0.1245GSI 1.1973 1319.7 2641.4 2645.32 3 

Power-law 
Erm = 2.1384×10-5GSI 

3.1448 
0.9424 1230.8 2465.6 2473.43 2 

Exponential Erm = 0.1263e0.0673GSI 0.9338 1227.5 2459 2466.83 1 

Erm-

RMR 

Linear Erm = 0.1445RMR 0.9456 1482 2966 2970.04 3 

Power-law 
Erm = 3.4477×10-5RMR 

3.0337 
0.753 1386.7 2777.4 2785.48 2 

Exponential 
Erm = 0.2069 

e0.0599RMR 
0.7297 1373.6 2751.2 2759.28 1 

Erm-BQ 

Linear Erm = 0.02665(BQ-90) 0.8240 1651.21 3304.42 3308.64 3 

Power-law 
Erm = 3.53×10-4(BQ-90) 

1.759 

0.6883 
1604.55 3213.10 3221.53 2 

Exponential 
Erm = 0.7776 

e0.00702(BQ-90) 

0.8146 
1586.91 3177.82 3186.25 1 

3.2.2 Bayesian inference of rock mass deformation modulus 

The rock mass deformation modulus, exp( )rm N NE z   , is defined as a lognormal distribution 

with a mean of 
2 /2N Ne

  
  and a standard deviation of 

2 22
( 1)N N Ne e

   
  . The parameters μ and 

σ are estimated using prior information (engineering experience) and field measurements (GSI, RMR, 

and BQ). The joint conditional probability distribution function, P(μ, σ|Data,Prior), represents the 

probability of the parameters μ and σ given the prior and field measurement information. By applying 

the Bayesian theorem [29], the probability distribution function, PDF, of the rock mass deformation 

modulus, Erm, can be expressed as follows: 

,
( | Data,Prior) ( | , ) (Data | , ) ( , )rm rmP E K P E P P d d

 
                  (2) 

where K=(∫μ,σP(Data|μ,σ)P(μ,σ)dμdσ)-1 is the normalization constant ensuring that the integral 

of P(μ,σ|Data) equals 1. Data represent a set of field-tested rock mass data, P(Data|μ,σ) is the 

likelihood function reflecting the model's fit to the data, and P(μ,σ) is the prior probability distribution 

of μ and σ. 

The posterior probability distribution of Erm, P(Erm|Data, Prior), is complex and difficult to obtain 

analytically. This study utilized the Markov Chain Monte Carlo (MCMC) simulation method along 

with the Metropolis‒Hastings (MH) sampling technique [30-31]. A large number of random samples 

are generated according to Equation 2, and when the MCMC algorithm satisfies the detailed balance 

condition, statistical analysis of the generated samples yields the posterior probability distribution 
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P(Erm|Data, Prior). 

For a specific engineering site, different empirical formulas and field measurements in Tab. 2 will 

yield different predicted values of the rock mass deformation modulus. The Bayesian inference 

method is used to integrate and update the predictions from different empirical formulas according to 

the following equation: 

2 2 2

1 1 1
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                                   (3) 
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where μi, μj, σi, and σj represent the mean and standard deviation of the i-th and j-th model 

predictions, and μ and σ represent the updated mean and standard deviation after Bayesian updating. 

4. Engineering case study 

This study constructs a digital twin model of a drill and blast tunnel to infer its geological 

information, classify the rock mass, establish a numerical model, and analyse the tunnel stability 

using the finite element method. The main workflow is shown in Fig. 3. To validate the applicability 

of this method, it is applied to verify the approach using the Dongpo Tunnel section of the Taihang 

Mountain Expressway in Handan. 

 

Figure 3: Work flow chart 

The Dongpo Tunnel is a separating long tunnel (left tunnel: 3116 m, right tunnel: 3128 m) located 

in Lingdi Village and Dongpo Village, Yetao Town, Wu'an, Handan City, Hebei Province, as shown 

in Fig. 4. The geology in the tunnel area mainly consists of Quaternary overburden and Middle 

Ordovician Majiagou Formation thick-bedded to very thick-bedded dolomite and middle Cambrian 

Fengshan Formation thick-bedded limestone interbedded with thick-bedded sandstone and thin-

bedded mudstone. The surrounding rock during tunnel excavation mainly comprises the Middle 

Cambrian Fengshan Formation thick-bedded limestone interbedded with thick-bedded sandstone and 

thin-bedded mudstone, with varying degrees of weathering from strong weathering to moderate 

weathering. 
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Figure 4: Geographical location of Dongpo Tunnel 

4.1 Digital Twin Model 

 

Figure 5: Digital twin model of the Dongpo tunnel face 

Based on the method described in section 2, the main tunnel face of the drill and blast excavation 

in the Dongpo Tunnel is digitally twinned. First, the true structure of the tunnel face is obtained 

through 3D laser scanning, and then a digital twin reconstructs the structural plane of the tunnel face 

using 3D point cloud data (Fig. 5). This provides the raw data for rock mass classification and 

information inference. 

4.2 Rock mass classification evaluation 

Based on the information on rock strength obtained from the on-site point load test in the tunnel, 

the rock mass quality of 15 tunnel faces from ZK38+970 to ZK39+080 on the left side of the Dongpo 

Tunnel is evaluated. The BQ index Kv value is obtained through linear interpolation, and RMR14 is 

calculated using the method in reference [32]. At the same time, the rock mass is intelligently classified 

based on the established digital twin model using the method in section 3.1. The comparison results 

between the two are shown in Fig. 6. The rock mass classification evaluation results obtained using 

the classification model in section 3.1 are consistent with the on-site tested rock mass classification 

results. The accuracy rate of the BQ evaluation index reaches 100%, and the results obtained from 

the GSI and RMR14 evaluation indexes differ by only one level. The evaluation scores for the 

sections where the rating deviates are close to the peripheral rock mass. The prediction accuracy of 

the probability model is 93% and 87%, both above 85%, which verifies the applicability and accuracy 

of the rock mass classification evaluation method proposed in this study for evaluating this section of 

rock mass. 
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Figure 6: Rock mass quality classification of the Dongpo tunnel face 

4.3 Finite element analysis 

4.3.1 Model parameters 

For the left side of the Dongpo Tunnel, full-section blasting excavation is adopted. After rock 

blasting excavation and slag removal, the initial lining (rigid arch, shotcrete) is constructed. After the 

deformation of the initial lining stabilizes, the construction of the inverted arch and secondary lining 

is carried out. To simulate the construction process, a finite element model with a length of 80 m, 

height of 70 m, and longitudinal extension of 110 m is established (Fig. 7). Considering the actual 

conditions of on-site construction, the excavation of the inverted arch and the construction of the 

secondary lining are relatively delayed (according to the on-site construction conditions, the delay is 

over 100 m). Therefore, the excavation of the inverted arch and the effect of the secondary lining are 

not considered during the simulation. According to the survey report, the surrounding rock of this 

construction section is limestone, with a rock mass parameter mi of 7, a Poisson's ratio of 0.25, and a 

density of 2750 kg/m3 [33-34]. The prior empirical rock mass deformation modulus is obtained based 

on reference [22], and the physical and mechanical parameters of the excavation part and the peripheral 

rock mass are determined by on-site laser scanning and point load test results using the method in 

section 3.2, as shown in Tabs. 3 and 4. The MATLAB program used for inferring rock mass 

parameters is shown in Fig. 8. The design parameters for the lining support and backfilling materials 

of the Dongpo Tunnel are listed in Tab. 5. 

The generalized three-dimensional nonlinear Hoek‒Brown strength criterion (Equation 5) is used 

to simulate the rock mass, and the plastic flow rule based on the improved Euler midpoint integration 

algorithm and the segmented implicit corrected plastic potential function is applied [35-36]. 

c2,moct
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τ
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octa
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                      (5) 

where mb, s, and a are empirical parameters reflecting rock mass characteristics, mb is a 

dimensionless empirical parameter for different rock masses[35], σc is the uniaxial compressive 

strength of the rock, and σm,2 is the arithmetic mean of the first and third principal stresses. Parameter 

s reflects the degree of rock fragmentation[36]. As shown in Tab 3, Tab 4 and Tab 5. 
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Figure 7: Mesh division of the finite element model 

Table 3: Parameters of the excavated rock mass of the Dongpo tunnel 

Serial number Initial mileage Termination mileage UCS(MPa) GSI Erm(GPa) 

1 ZK38+970 ZK38+974 30.09 52.7 5.95 

2 ZK38+974 ZK38+989 47.29 54.04 8.22 

3 ZK38+989 ZK38+992 28.61 34.87 4.18 

4 ZK38+992 ZK39+001 32.40 29.59 3.81 

5 ZK39+001 ZK39+004 39.72 43.9 5.85 

6 ZK39+004 ZK39+013 46.24 45.64 6.10 

7 ZK39+013 ZK39+019 37.38 51.77 6.52 

8 ZK39+019 ZK39+028 37.38 37.19 4.64 

9 ZK39+028 ZK39+037 70.21 50.73 10.49 

10 ZK39+037 ZK39+049 63.71 43.95 7.85 

11 ZK39+049 ZK39+055 42.78 37.53 4.86 

12 ZK39+055 ZK39+067 45.19 46.33 6.47 

13 ZK39+067 ZK39+073 42.66 36.98 4.92 

14 ZK39+073 ZK39+080 37.50 34.77 4.35 

Table 4: Parameters of the peripheral rock mass of the Dongpo tunnel 

Serial number Initial mileage Termination mileage UCS(MPa) GSI Erm(GPa) 

1 ZK38+970 ZK38+992 35.33 47.20 6.12 

2 ZK38+992 ZK39+013 39.45 39.71 5.25 

3 ZK39+013 ZK39+037 48.33 46.56 7.22 

4 ZK39+037 ZK39+055 53.24 40.74 6.36 

5 ZK39+055 ZK39+080 41.74 43.80 5.55 

  
(a) Excavated rock mass (ZK38+970 ~ ZK38+974)  
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 (b) Peripheral rock mass (ZK38+970 ~ ZK38+992) 

Figure 8: Geological parameter inference program of tunnel surrounding rock 

Table 5: Lining and backfill material parameters of Dongpo tunnel 

 Density (kg/m3) Elasticity modulus (GPa) Poisson's ratio Thicknesses 

(cm) 

Primary 

lining 

2500 28.0 0.20 25 

Secondary 

lining 

2500 29.5 0.25 40 

Backfill 2600 26.0 0.25 - 

4.3.2 Results and analysis 

According to the results of the finite element analysis, the deformation of the tunnel is shown in 

Fig. 9. The dynamic variation curves of the relative displacement of the tunnel sidewalls, 

displacement of the tunnel roof, and deformation of the tunnel face during the construction process 

are shown in Fig. 10. The internal force distribution of the lining is shown in Fig. 11. 

                    
(a) Horizontal deformation          (b) Vertical deformation           (c) Plastic deformation 

Figure 9: Tunnel deformation during initial lining 

 
(a) Relative displacement of tunnel sidewalls 
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(b) Displacement of tunnel roof 

 
(c) Deformation of tunnel face 

Figure 10: Dynamic change in tunnel deformation with excavation 

         
(a) Tensile stress        (b) Compressive stress 

Figure 11: Initial lining internal forces 

From the results of deformation and internal forces obtained from the finite element simulation 
analysis, it can be seen that under the initial lining structure, the plastic deformation of the surrounding 
rock is small, and the plastic damage zone is small. The internal forces of the lining are mainly 
compressive stress, with a partial tension stress zone appearing at the top of the lining, but the tension 
stress is relatively small. The trend of tunnel roof displacement is consistent with the relative 
displacement of tunnel sidewalls and deformation of the tunnel face, but the differences between them 
are relatively small. This is because the vertical displacement of the tunnel roof is strongly restricted 
by the surrounding rock mass, and the differences in vertical displacement of the tunnel roof are 
reduced by the effect of the lining structure. Based on the stress and deformation analysis results, the 
stability of the rock mass in the Dongpo Tunnel can be preliminarily determined to be good. 

5. Conclusion 

Based on digital twin technology, this study acquires information on the tunnel face using the 
drilling and blasting method and establishes a rock mass classification and information inference 
model based on Bayesian theory. The method is successfully applied to the Dongpo Tunnel, and the 
stability of the tunnel is analysed based on the inferred geological information. The main conclusions 
are as follows: 

(1) The application of 3D laser scanning and point cloud data reconstruction techniques in 
information acquisition of tunnel faces has good results. Based on the reconstructed model, geometric 
information of rock masses, such as structural plane spacing, roughness, pathline length, and joint 
inclination, can be obtained. 

(2) By combining 260 sets of rock mass information with Bayesian networks and junction tree 
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algorithms, an intelligent rock mass classification model applicable to GSI, RMR, and BQ is 
constructed. Based on this model, the accuracy rate of BQ standard applications in Dongpo Tunnel is 
100%, and the other two are above 85%. 

(3) Based on prior rock mass information and on-site test results, a formula relating the rock mass 
deformation modulus and classification criteria can be established. By using Bayesian inference 
combined with MCMC simulation, the posterior probability distribution of the rock mass deformation 
modulus can be obtained, thereby achieving a method to infer the rock mass deformation modulus 
based on field measurements and empirical information. 
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