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Abstract: Three-dimensional model reconstruction is a pivotal technology in the realm of 

computer vision. Point cloud registration serves as its integral step, which decisively 

impacts the efficiency and precision of the entire reconstruction process. However, existing 

point cloud registration algorithms often face issues. These include prolonged processing 

time, inadequate accuracy, and poor robustness. To address these problems, this paper 

proposes a novel point cloud registration algorithm based on corner detection (Harris) and 

partition-based local feature statistics (DLFS). The main steps are as follows: Firstly, the 

Harris corner detection algorithm is employed. This step is crucial for extracting key points 

and enhancing the efficiency of the registration process. Secondly, the DLFS method is 

used to describe the features of each key point, generating feature vectors. Subsequently, 

matching point pairs are filtered based on rigid distance constraints, and an coarse 

registration is performed using the Random Sample Consensus (RANSAC) algorithm. 

Finally, the Iterative Closest Point (ICP) algorithm is applied for fine registration. 

Experimental results demonstrated the effectiveness of this method. It significantly 

improved registration accuracy, robustness, and computational efficiency. Therefore, it 

holds substantial value for practical point cloud registration applications. 

1. Introduction 

3D point cloud registration is widely applied in various fields such as autonomous driving [1], 

industrial production [2], agriculture [3], and cultural heritage restoration [4]. In practical 

applications, due to factors such as object occlusion, surface layout, and measurement methods, it is 

often necessary to perform multiple measurements from different perspectives and integrate the 

point cloud data into a common coordinate system. This is achieved by calculating rotation and 

translation matrices to obtain a complete 3D point cloud dataset. 

Point cloud registration can be primarily categorized into methods based on Iterative Closest 

Point (ICP) [5, 6], feature learning methods [7, 8], and end-to-end learning methods [9]. Compared 

to the latter two, ICP-based methods have a strict mathematical theory guaranteeing their 

convergence, and they do not require prior training for unknown datasets, thus possessing good 
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generalization capabilities [10]. Moreover, ICP methods have good robustness when handling 

certain degrees of initial errors and noise. However, these methods still face challenges such as 

sensitivity to initial alignment, slow convergence speed, and difficulty in finding global optimal 

solutions. To address these challenges, various optimization methods have been proposed .For 

instance. A point cloud automatic registration method based on normal vectors is proposed [11], 

which uses coarse registration to provide a good initial pose for fine registration, thereby avoiding 

local optima. However, due to the poor noise robustness of feature points based on normal vectors, 

this may lead to a decrease in registration accuracy. To overcome the impact of noise on registration, 

reference [12] adopted shape index key point detection and nearest neighbor distance ratio to 

enhance noise resistance. Reference [13] employed a point cloud registration method driven by 

multi-feature extraction and matching matrix, which reduces the impact of noise on registration by 

extracting robust keypoints and local geometric features. Reference [14] adopts a multi-normal 

neighborhood for feature point extraction, uses the Random Sample Consensus (RANSAC) 

algorithm and clustering selection method to optimize the descriptors for coarse registration, and 

finally applies the ICP algorithm for fine registration. This algorithm improves registration accuracy 

but suffers from reduced efficiency due to the computation-intensive multi-neighborhood normal 

calculation.To improve the success rate of point cloud registration under low overlap, reference [15] 

employs the 4-Point Congruent Sets (4PCS) algorithm for coarse registration and Sparse Iterative 

Closest Point (SICP) algorithm for fine registration. However, the 4PCS algorithm has high time 

complexity. To reduce the time consumption of the 4PCS algorithm, literature [16] used the 

Principal Component Analysis (PCA) algorithm to extract feature points, Super-4PCS to complete 

coarse registration, and then further used ICP for fine registration, which reduced the computational 

complexity during matching and improved registration efficiency. However, it still required manual 

setting of the overlap rate. 

To address these issues, a three-dimensional point cloud registration algorithm based on 

Harris-DLFS was proposed. This algorithm aims to tackle the low registration accuracy and 

efficiency problems of traditional point cloud algorithms when dealing with noisy and occluded 

point clouds. The method was validated on the Stanford point cloud dataset and the U3OR dataset. 

2. Harris-DLFS Algorithm Principle 

In practical applications, large volumes of three-dimensional point cloud data are often 

encountered, and local neighborhood points may have similar features, leading to a certain degree 

of information redundancy. Concurrently, a considerable amount of point cloud data inevitably 

contains noise information. These factors can affect the efficiency and robustness of algorithms. To 

solve these problems, a voxel grid filter is employed to process the three-dimensional point cloud. 

Specifically, the three-dimensional point cloud is divided into multiple small cubes, or "voxels." 

Then, points from the original point cloud data that are closest to each voxel centroid are used to 

replace the voxel center, thereby simplifying the entire three-dimensional point cloud. 

2.1. Harris Feature Point Extraction 

To quickly extract a representative and stable set of feature points from the down-sampled point 

cloud, the Harris algorithm [17] is used for feature point extraction. The specific steps of the 

detection algorithm are as follows: 

(1) For any point pi in the point cloud, a spherical neighborhood is searched within a search 

radius Rk, and the neighboring points are denoted as a point set Q = {q1, q2 ⋯ qk}. The covariance 

matrix of normals is constructed for point p and the neighborhood point set Q. The expression for 

the covariance matrix of normals is equation (1). 
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                       (1) 

In the equation, k represents the number of neighboring points for point pi, and nx, ny, nz 

denote the coordinates of the normal vectors of the neighboring points. 

(2) The response value for each point in the point cloud is calculated using the following 

equation (2). 

                        (2) 

(3) The feature points in the point cloud are determined based on the comparison between the 

R3d value of each point, calculated using a certain formula, and a threshold value Rt. If the R3d 

value exceeds the threshold and the point is a local maximum, then the point pi is considered a 

feature point and is included in the set of feature points pkey. Otherwise, the current point is not 

considered a feature point. 

2.2. DLFS Feature Point Description 

For the obtained set of Harris feature points 𝑝𝑘𝑒𝑦, the Distributed Local Feature Statistics (DLFS) 

descriptor [18] is used to describe the neighborhood information of the feature points. DLFS first 

constructs the Local Reference Axis (LRA) and Local Minimal Axis (LMA) using an efficient 

method. Then, based on the spatial and geometric information encoded by the neighborhood's LRA 

and LMA, DLFS exhibits robustness against noise and occlusion. The computation process of the 

DLFS descriptor is as follows: 

(1) For any point pkey−i in the feature point set pkey, based on the search radius Rd, the 

neighboring point set Q’ = {q1
′ , q2

′ ⋯ qk
′ }of pkey−i can be found. In order to achieve rotation and 

translation invariance of local neighborhood points, Q’ is first transformed, as shown in Figure 1, 

so that pkey−i coincides with the coordinate origin, LRA aligns with the z-axis of the global 

coordinate system, and the transformed Q′ is denoted as Qt
′ . 

 

Figure 1: Transformation Method of Point Set 

(2) Alignment Based Local Neighborhood Point Set Qt
′ , first divide the spatial area into N 

regions along the direction of the projection radius and calculate the local height information (lh) of 

each neighboring point in each partition. The calculation formula is equation(3). 

                               (3) 

Among them, the range of lhk  is [0，2Rd]  and qtk
′ (z)  is the z-axis coordinate of the 

neighborhood point qtk
′ . 
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(3) Calculate the three geometric properties (α, β, γ) of the local neighborhood point set Qt
′  for 

point pkey-i, specifically the calculation of three angle attributes. The calculation formula is 

equation(4). 

                           (4) 

Where pqk represents the vector from p to qk, LMAk represents the LMA at qtk
′ , and LMAk

′  

is calculated using the equation(5). 

                     (5) 

The range of these three angle attributes is [0, π]. 

(4) After calculating the four attributes (lh, αk, βk, γk) in the subspace for point pkey-i with all 

points in Qt
′ , the histograms (Hlh, Hα, Hβ, Hγ) of the four attributes are computed. The histograms 

are then normalized, and different weights (λ1, λ2, λ3, λ4) are assigned to each histogram. Finally, 

the four histograms are concatenated to form the DLFS descriptor f = {λ1Hlh, λ2Hα, λ3Hβ, λ4Hγ}. 

3. Coarse and Fine Registration 

Firstly, the feature point sets of the source and target point clouds are described using DLFS 

descriptors, resulting in feature vectors Pf and Qf. Since the feature vectors for the same feature 

point are identical, based on this principle, the corresponding points in Qf for each feature vector in 

Pf can be found by calculating the nearest Euclidean distance, thereby obtaining all initial 

corresponding point pairs. 

Next, the RANSAC algorithm is used to compute the optimal transformation based on these 

initial corresponding point pairs. The specific steps of RANSAC are as follows: 

(1) Randomly select 3 point pairs from the initial corresponding point pairs as samples. 

(2) Calculate the rigid transformation matrix T based on the randomly selected 3 point pairs. 

(3) Apply the transformation matrix T to the source point cloud and then evaluate the Euclidean 

distances between the remaining point pairs. If the Euclidean distance between the point pairs is less 

than a threshold value t, it is considered a correct match and classified as an inlier; otherwise, it is 

considered an incorrect match and classified as an outlier. 

(4) Repeat the above steps until the predetermined number of iterations is reached. Finally, select 

the rigid transformation matrix with the highest number of inliers as the final transformation matrix 

T′. 
After obtaining the final transformation matrix T', it is applied to the source point cloud P to 

obtain P', thus completing the coarse registration. 

Next, the Iterative Closest Point (ICP) algorithm is used to refine the coarse registration result. 

The basic steps of ICP are as follows: for each point in the source point cloud, search for the nearest 

point in the target point cloud as its corresponding match point. Then, based on these match point 

pairs, compute the transformation matrix between the source and target point clouds, which updates 

the coordinates of the source point cloud. Repeat this process iteratively, gradually approaching the 

spatial position of the target point cloud, until the iteration termination condition is met. In this way, 

the optimal alignment between the source and target point clouds is achieved. 
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4. Experimental Results 

In order to validate the effectiveness of the proposed algorithm, comparative experiments were 

conducted with the K4PCS and ISS-FPFH algorithms in this study. The robustness of the algorithm 

was tested on the B3R and U3OR datasets, evaluating its performance on model point clouds, 

partial point clouds, and occluded point clouds. All experiments were conducted on an Ubuntu 

system with a 3.5GHz CPU (i5-13600Fk) and 32GB of memory, utilizing the pcl1.10 points cloud 

library. The evaluation criteria for the experiments included root mean square error (RMSE) and 

time. The formula for RMSE is the equation(6). 

                             (6) 

Where pi and qi represent the corresponding nearest neighbor points in the two registered 

point clouds, and N denotes the total number of corresponding points. 

From Figure 2, it can be observed that all three methods successfully completed point cloud 

registration, but the ISS-FPFH method exhibited significant errors near the front paws of the rabbit, 

while the K4PCS method had noticeable errors around the rabbit's ears. In comparison, the coarse 

registration method proposed achieved a more uniformly accurate fusion compared to the 

ISS-FPFH and K4PCS methods. Combining the analysis from Table 1, it can be concluded that in 

the validation of common point clouds under the B3R dataset, the proposed method not only 

achieves good coarse registration results but also has shorter processing time. Compared to the 

ISS-FPFH and K4PCS methods, it demonstrates higher registration accuracy and efficiency. 

 

Figure 2: Model Point Cloud Registration Results 
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Table 1: RMSE and time consumption of model point cloud registration results 

Registration method RMSE coarse time/s fine time/s 

ISS-FPFH 0.0021 4.07 1.136 

K4PCS 0.00207 15.0 1.02 

proposed 0.00207 2.67 0.22 

Based on the analysis results from Figure 3 and Table 2, it can be observed that the ISS-FPFH 

method exhibits rotational errors during coarse registration but has the shortest processing time. The 

K4PCS method shows translational errors and has the longest processing time. In contrast, the 

proposed method achieves substantial overlap during coarse registration, with a processing time 

comparable to that of the ISS-FPFH method. In the fine registration stage, the proposed method 

outperforms both the ISS-FPFH and K4PCS methods, exhibiting improved accuracy. Furthermore, 

it has the shortest processing time for fine registration, while the overall processing time remains 

like that of the ISS-FPFH method. 

 

 

Figure 3: Partial Point Cloud Registration Results 
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Table 2: RMSE and time consumption of point cloud registration results for partial point cloud 

Registration method RMSE coarse time/s fine time/s 

ISS-FPFH 0.513 4.78 1.42 

K4PCS 0.515 23.2 0.69 

article 0.38 6.2 0.25 

In order to further validate the robustness of the proposed algorithm against occlusions, 

comparative experiments were conducted in the U3OR dataset. As shown in Figure 4 and Table 3, 

both the K4PCS and ISS-FPFH methods failed to achieve successful registration. In contrast, the 

method proposed in this study achieved accurate alignment during the coarse registration stage and 

achieved a perfect overlap with the source and target point clouds during the fine registration stage. 

 

 

Figure 4: Occlusion Point Cloud Registration Results 

Table 3: RMSE and time consumption of occluded point clouds in U3OR dataset  

Registration method RMSE coarse time/s fine time/s 

ISS-FPFH / / / 

K4PCS / / / 

article 751.003 10 79.39 

5. Conclusions 

This research proposes a 3D point cloud registration algorithm based on Harris-DLFS. This 

algorithm exhibits robustness and can automatically register model point clouds, partial perspective 

point clouds, and scene-occluded point clouds. The algorithm first down-samples the original point 

cloud through voxel filtering, then extracts feature points through the Harris algorithm, and uses the 
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DLFS descriptor to describe the neighborhood information of the feature points, establishing a 

feature histogram. Subsequently, the initial registration point pairs are obtained through histogram 

distance constraints. Then, the optimal transformation matrix is obtained using the RANSAC 

algorithm. Finally, the ICP algorithm is used to complete the fine registration. Experimental results 

indicate that compared with ISS-FPFH and K4PCS, the method proposed in this research has higher 

registration accuracy, shorter time consumption, and stronger robustness, demonstrating practical 

value for achieving automatic point cloud registration. 
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