

Methods of Analysis of Amazon Product Reviews and

Rating Prediction

Shixun Huang1, Xiaowen Zhang2, Mingzhi Wang3

1Mathematical Applications in Economics and Finance, 27 King’s College Cir, University of

Toronto, Toronto, Canada
2Computer Science, 27 King’s College Cir, University of Toronto, Toronto, Canada

3Computer Science and Technology, Civil Aviation Flight University of China, 46 Section 4

Nanchang Road, Guanghan, China

Keywords: review rating prediction, keyword extraction, sentiment analysis, TF-IDF,

recurrent neural network

Abstract: Online shopping reviews have become an important data source for merchants to

make smarter decisions in product development, operations, and marketing. In this paper,

we propose a modeling strategy to optimize data analysis and processing of online shopping

review data. We address four main problems: identifying commonly used words in positive,

negative, and helpful reviews, predicting the products to which the comments refer using

semantic analysis, predicting the product rating based on the comments using sentiment

analysis, and proposing ways to distinguish human comments from machine-generated ones.

Additionally, we provide a recommendation letter to customers on how to read product

reviews.

1. Introduction

1.1 Problem Background

In this modern day and age, online shopping has become an inseparable part of many people,

including us. We love the convenience of sitting in a penthouse in LA (which we don’t have), buying

a product from South Africa that’s probably made in China. Time and effort are saved because

customers do not have to be at the physical location where the products are sold.

However, this advantage of online shopping also comes with a drawback. Because customers are

no longer in the physical location of the shop and being in contact with the products directly, they are

not able to inspect the products and make a reasonable purchase based on their own knowledge. Hence,

customers participating in online shopping mostly rely on two information sources: the description

written by the merchant, and the reviews written by customers.

The description written by the merchant is usually not a good representation of the overall quality

of a product. Since the end goal of the average merchant is to sell as many products as possible, their

description is usually one-sided and includes exaggeration and dissemblance.

Many customers are aware of this. Hence, they often go to the review section for more objective

information. However, being able to obtain truly objective information from the reviews is difficult.

Transactions on Computational and Applied Mathematics (2023)
Clausius Scientific Press, Canada

DOI: 10.23977/tracam.2023.030102
ISSN 2616-1826 Vol. 3 Num. 1

7

Reasons include: each person has their own rating scheme and expectation of the product; merchants

sometimes pay people to leave fake review; machine-generated reviews could be more often than

expected.

In order to help customers with gathering information on a product, this paper attempts to perform

semantic and sentiment analysis of product reviews on amazon. A few evaluation criteria for human

vs machine-generated reviews are proposed.

1.2 Restatement of the Questions

Based on our understanding of problem background and the questions listed in the problem

statement, we need to perform the following task:

o Analyze word frequencies in the reviews in the appendixes provided.

o Extract keywords from the reviews.

o Perform semantic analysis on the reviews, predict the name of the product a review refers to.

o Perform sentiment analysis on the reviews, predict the overall rating that corresponds to the

review.

o Propose evaluation criteria for distinguishing between human and machine-generated reviews.

2. Definitions and Notations

2.1 Definitions

NLP Natural Language Processing

Token (Term) The smallest meaningful unit in NLP, such as a word

TF Term frequency

DF Document frequency

IDF Inverse document frequency

Specificity The uniqueness of a token in a document by contrast with other documents that could

belong to other domains [1]

Representativity The degree to which a token convey the meaning of the document, in contrast

to other words that only reflect minor aspects [1]

Keyness The specificity and the representativity of a token

Stopword A word in a language that is frequently used but often have no semantics when not in

context, such as “the”, “a”. and “it” in English

RNN Recurrent Neural Network LSTM Long Short Term Memory GRU Gated Recurrent Unit

2.2 Notations

The key mathematical notations used in this paper are listed in Table 1.

Table 1: Notations used in this paper

8

3. Model I: Rating Prediction with TF-IDF Keyword Extraction

3.1 Rating Prediction with TF-IDF Keyword Extraction Theory

According to the questions, we need to extract keywords from the reviews, predict the product

names, and the ratings associated with the reviews. We realize that these three tasks are really one.

We first compute the keyness of individual words in the review. Then, we combine the meaning of

the words, each weighted by their keyness, to form the sum of the meaning of all words, i.e. the

review. Using the sum, we can determine the sentiment, thus, the rating, of the review.

3.2 Rating Prediction with TF-IDF Keyword Extraction Method

Our Rating Prediction with TF-IDF Keyword Extraction model can be divided into the following

components: DF calculation, keyness calculation, token vectorization, document vectorization, and

model training.

3.2.1 TF-IDF Introduction

TF-IDF (Term Frequency-Inverse Document Frequency) is a popular technique used in

information retrieval and NLP to represent the keyness of a term in a document of collection of

documents. TF is the number of times a term occurs in a document. A higher TF usually means a

higher representativity. IDF is a measure of how rare or unique a term is across a collection of

documents. A higher IDF usually means a higher specificity.

𝑓(𝑥, 𝑡) = {
1， 𝑖𝑓 𝑥 = 𝑡

0， 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

TF(t, d) = ∑ 𝑓𝑟(𝑥, 𝑡)

𝑥∈𝑑

D(t, C) ∑ {
1， 𝑖𝑓 𝑥 = 𝑡

0， 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑑∈𝑐

IDF(t, C) = ln
𝑐𝑜𝑢𝑛𝑡(𝐶)

𝐷𝑇(𝑡, 𝐶)

TF-IDF value is the product of the TF (representativity) and IDF (speficity) of a term. It captures

our definition of keyness very well.

𝑇𝐹𝐼𝐷𝐹(𝑡, 𝑑, 𝐶) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡, 𝐶)

3.2.2 DF Calculation

To calculate the TF-IDF value of a token in a document, we must first determine the DF of every

token in the collection of documents. After the DF of every token is calculated, a mapping between

tokens and their DF is created. This enables us to access the DF of any token later on in the process.

3.2.3 Keyness Calculation

As previously mentioned, the TF-IDF value captures our definition of keyness. Thus, we use the

TF-IDF value of the tokens to determine their keyness in the document and rank them from the most

key to the least key.

9

3.2.4 Token Vectorization

In order to perform calculations, we must find ways of transforming tokens into numeric values.

One way of doing this is to use word embeddings. Word embedding is a technique used in NLP to

represent words as dense numerical vectors in an Nd space, where words with similar meanings or

context have similar vectors. The main idea behind word embedding is to transform the semantic and

syntactic relationships between words into a format that can be used for machine learning. The

embedding process is typically performed using neural network-based methods.

For this model, we use a pretrained embedding provided by Stanford University. It is trained on 2

billion tweets and transforms words into 100d vectors [3]. We create a mapping between all tokens

in the documents and their corresponding 100d vectors.

3.2.5 Document Vectorization

For each document in the collection of documents, we attempt to transform them into 100d vectors

as well.

First, we split a document into tokens using NLTK’s tokenizer [5]. Then we calculate the TF of

every token. Using the TF created at this step and the DF created in the previous step, we calculate

the TF-IDF score of the tokens. Finally, using the TF-IDF score and the embedding, we calculate the

100d vector representing the document.

3.2.6 Model Training

The most intuitive way of formulating this rating prediction is to consider it as a multiclass

classification task. We would have a five-by-one-hundred weight vectors, each corresponding to a

rating (1.0, 2.0 …). After computing the dot product between the document vector and all weight

vectors, we obtain five values, each corresponding to a rating. To normalize the values, we feed them

into a SoftMax function, which outputs the probabilities of the review being each of the rating. We

also need to turn the scalar rating into one-hot vector of probabilities, in which the element at the

index of rating would be one, and all others would be zero. Then we calculate the loss of each cell

individually and update our weights accordingly.

3.3 Rating Prediction with TF-IDF Keyword Extraction Result

3.3.1 DF Calculation

We first calculate the TF of all tokens across the reviews in Appendix I and obtain the data shown

in Figure 1.

10

Figure 1: Wordcloud and TF of Appendix 1

Unsurprisingly, the wordcloud is flooded with stopwords. To make meaningful analysis, we decide

to remove the stopwords and obtain the data shown in Figure 2.

Figure 2: Wordcloud and TF of Appendix 1 Without Stopwords

After removing the stopwords, we can see some meaningful patterns. The word “show” lead the

pack, appears approximately twice as often as the second most common non-stopword. From this, we

conclude that the reviews in Appendix II are about TV shows. We look up eleven most frequent ASIN

in the data, accounting for 10 percent of the reviews. And indeed, six of them are TV shows, and five

of them are episodes of TV shows!

Our goal for this step though, is to calculate the DF of all tokens in the collection, not the TF of

them across the collection. Using Appendix 2, we repeated the process of drawing wordcloud and bar

plot, but this time using DF instead of TF. The word cloud maps are shown in Figure 3 and Figure

4.

Figure 3: Wordcloud and DF of Appendix 2

11

It is curious to see that “wa” has the second highest document frequency. However, having

misspelled words in our analysis is not desired. Thus, we limit the words to nouns provided by

Princeton University [4].

Figure 4: Wordcloud and DF of Appendix 2 (Nouns Only)

Now only nouns are included in our wordcloud. Based on the words “use”, “work”, and “car”, we

conclude that the products in Appendix 2 are car-related products. We look up eleven most frequent

ASIN in the data, accounting for five percent of the reviews. They are all car accessories, confirming

our hypothesis.

3.3.2 Keyness Calculation

To calculate the TF-IDF of a token, we need to first calculate its TF. Then we multiply its TF with

its IDF. The product is its TF-IDF value.

To demonstrate this, we randomly sample a review from Appendix 3, and perform TF-IDF

calculation on all tokens as shown in Figure 5.

Figure 5: TF-IDF of tokens in a random review in Appendix 3

From this graph, we could see that the TF-IDF matrix does produce reasonable results. As the

name and the brand of the product are the top two words according to this metrics.

We also attempt to incorporate several other metrics proposed in YAKE! (Campos, et al., 2020)

[1] for better performance as shown in Figure 6.

12

Figure 6: Customized Metric Value of tokens in a random review in Appendix

Mail, a word that is not related to the product in any way, is incorrectly labeled as the most key

token in this review, which is not desired. Further calculation shows that the inter-agreement between

the TF-IDF method and the modified YAKE! Method is less than 0.5. Because of this, we decide to

stick with the TF-IDF metric.

3.3.3 Keyword Extraction

Now we have the keyness values of all tokens in a review, we can rank them and take the top k as

keywords [2]. Using the keywords, we can predict what words are in the name of the product.

We run our TF-IDF keyword extractor on all reviews in Appendix 4. We then randomly select two

asins, manually search for the product name, and compare the actual name with the keywords

generated by our keyword extractor.

o Yamaha FC5 Compact Sustain Pedal for Portable Keyboards, black, asin B00005ML71

o Our top five keywords are keyboard, pedal, piano, sustain, Yamaha.

o Nady SP-4C Dynamic Neodymium Microphone, asin B00009W40D

o Our top five keywords are mic, nady, karaoke, interest, cube.

Based on these two examples, we are confident with the ability of extracting keywords of our

keyword extractor.

3.3.4 Token Vectorization and Document Vectorization

These two steps involve turning human-readable data into machine-learning-friendly data that are

not human-readable. The outputs of these two steps are 100d vectors. Hence, we will not show any

outputs.

3.3.5 Model Training

After transforming text into vectors, we now can leverage machine learning to make predictions.

Before training starts, we are going to inspect the data in Appendix 5 as shown in Figure 7.

13

Figure 7: Rating Counts of Appendix 5

This data is heavily biased towards higher ratings. We see similar patterns in all other Appendixes.

It is not unexpected, as many people tend to give a rating of five when the product meets expectations.

Ratings of one and two are only given when there is a significant problem, which happens rarely. To

mitigate this issue, we use class weights during training, so the underrepresented classes have more

impact on the weights than the overrepresented classes. The class weights are calculated and mapped

in Figure 8 as follows:

Figure 8: Accuracy and Confusion Matrix of Classifier without Class Weights

Initially, we train the model without using the class weights. The validation accuracy of our model

plateaued around 0.43, which is much lower than we anticipated. Despite effort at hyperparameter

tuning, our final test accuracy is 0.52. Inspecting the confusion matrix, we find that the bias in the

original training data has a huge impact on model performance. More than 90% of the predictions

made by our model are fives. See Figure 9 for details.

Figure 9: Accuracy and Confusion Matrix of Classifier with class weights

Despite a drop in the validation accuracy and test accuracy by 0.01, we are happy with the

improvements made by our model. Instead of constantly predicting five, which gives a high recall but

14

a low precision, our model is now making useful predictions.

One cell that stands out in the confusion matrix is when the actual rating is four but our model

predicted five. To find out why, we train the models again on Appendix 6 and attempt to find a few

examples in which our model give a false rating of five.

One review reads “BEEN USING NOW FOR 3 YEARS. SLOWLY REPLACING ALL HOSES

WITH THESE. KEEP THEM WRAPPED IN A WIND UP STORAGE CONTAINER AND IT

LOOKS LIKE I SHOULD HAVE MANY YEARS OF QUALITY HOSES.” Usually, when a human

sees a review like this, they would usually think this has a rating of five. However, its true rating is

four. So, it is difficult to determine the real value of our model compared with the average human.

4. Model II: Rating Prediction with RNN

4.1 Rating Prediction with RNN Theory

The approach used in Model I is ultimately a bag-of-words approach. This means a document is

solely characterized by the tokens in it. The relationship between tokens, however, is not considered.

This model considers the relationship between tokens. We can capture the context of a token if we

keep a record of previous and following tokens.

4.2 Rating Prediction with RNN Method

Two steps are conducted when we train this model to predict rating: data preprocessing and

machine learning. This model relies heavily on the machine learning part.

4.2.1 Data Preprocessing

Different from the previous model, we do not convert the document to a bag-of-word format.

Instead, we lemmatize all tokens in the document using tools provided by [5], and create a mapping

between lemmas and 100d vectors, using a pretrained word embedding (Pennington, Socher, &

Manning, 2014) [3].

4.2.2 Machine Learning (RNN)

A specific type of machine learning architecture is employed in this mode, RNN. RNNs are

designed to handle sequential data, making them well-suited for processing text, which is inherently

sequential. RNNs can maintain a hidden state that captures information from previous words or tokens

in the text, allowing them to model the context and dependencies between words effectively.

In this model, we use the GRU variation of RNN as shown in Figure 10.

Figure 10: Gated Recurrent Unit, Jeblad, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-

sa/4.0>, via Wikimedia Commons

15

Figure 11: GRU Formulae https://en.wikipedia.org/wiki/Gated_recurrent_unit

The update gate (z) determines how much of the previous hidden state should be retained and how

much of the new input should be added to the current hidden state. It controls the balance between

remembering old information and updating with new information. The GRU formula is shown in

Figure 11.

The reset gate (r) controls the amount of information from the previous hidden state that is

incorporated into the current input. It helps the model decide which part of the past information to

forget and which part to pass on to the next step.

The hidden state (h) carries information from one time step to the next. The output of the GRU at

each time step is usually the hidden state, which can be used for predictions or further processing.

In addition to the usage of GRUs, this model uses bidirectional architecture as well. As shown in

figure 12.

Bidirectional RNNs offer several advantages for text processing tasks. In traditional RNNs,

information flows only from past to future time steps. However, bidirectional RNNs process the input

sequence in both forward and backward directions simultaneously. This means that the model can

capture context from both past and future words, allowing it to have a more comprehensive

understanding of the entire input sequence.

Figure 12: Bidirectional RNN

4.3 Rating Prediction with RNN Result

As we discovered in 4.3.5, Appendix 5 and 6 are heavily skewed towards higher ratings.

Thus, we default to using class weights to compensate that problem. We used the data in Appendix

6 for this training task.

Eventually the model reaches a test accuracy of 0.45 on Appendix 6, which is still quire

underwhelming. However, by observing the confusion matrix in Figure 13, we can see that the model

is capable of predicting the general sentiment of the reviews i.e. whether they are positive or not. We

see that most of the predictions are with in one from the true rating.

16

Figure 13: Accuracy and Confusion Matrix of Model II on Appendix 6

5. Comparison between Model I and Model II

Model 1, our keyword extractor, has shown promising results in predicting the products to which

comments refer using semantic analysis. This is an essential tool for merchants to gain a deeper

understanding of consumer needs and preferences, which can inform their product development and

marketing strategies.

Model 2, Bidirectional RNN with GRU, reaches higher accuracy than model 1 in sentiment

analysis and review rating prediction.

Overall, the performance of Model II is significantly better than Model I. Its test accuracy is 30%

- 50% higher than Model I across the Appendixes. However, Model I is more light-weight, being

easier and faster train, uses less parameter, and still reaches an accuracy that’s at least 80% higher

than random on all datasets.

6. Conclusion

In conclusion, online shopping review data is a valuable resource for merchants to optimize their

products, services, and operational strategies. Our modeling strategy provides a comprehensive and

effective approach for analyzing and processing online shopping review data.

We believe that our recommendations will help merchants make better decisions and improve their

competitiveness in the market. Additionally, our recommendation letter to customers provides

guidance on how to read and interpret product reviews, helping them make informed purchasing

decisions.

Overall, our research has shown that online shopping review data is a valuable resource for

merchants. By effectively utilizing this data, merchants can gain valuable insights into consumer

needs and preferences, which can inform their decision-making processes. Our models have

demonstrated their potential for extracting valuable insights from review data, which can be used to

optimize product development, operations, and marketing strategies.

References

[1] Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., & Jatowt, A. (2020). YAKE! Keyword extraction

from single documents using multiple local features. Information Sciences, 509, 257-289.

[2] Firoozeh, N., Nazarenko, A., Alizon, F., & Daille, B. (2020). Keyword extraction: Issues and methods. Natural

Language Engineering, 26(3), 259—291.

[3] Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Representation. In Empirical

Methods in Natural Language Processing (pp. 1532-1543).

[4] Princeton University. (2010). Retrieved from WordNet: https://wordnet.princeton.edu/.

[5] Zhu, T. (2021). From Textual Experiments to Experimental Texts: Expressive Repetition in “Artificial Intelligence

Literature”. Theoretical Studies in Literature and Art, 41(5), 140—147. (n.d.). Retrieved from NLTK :: Natural Language

Toolkit: https://www.nltk.org/index.html#

17

http://www.nltk.org/index.html

