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Abstract: In this study, a hybrid optimization XGBoost model was used to predict the 

slump of concrete. This optimization model combines grid search and particle swarm 

optimization (PSO) algorithm. The grid search is used to determine the maximum depth 

and the number of trees in XGBoost, while the particle swarm optimization optimizes other 

floating-point hyperparameter ranges to improve the predictive accuracy of the model. The 

factors influencing the slump of concrete include water, cement, fine aggregate, coarse 

aggregate, and water reducer, which are represented by seven parameters. The model 

performs excellently in both the training and testing sets, with a coefficient of 

determination (R2) exceeding 0.97. In conclusion, this study demonstrates that the hybrid 

optimization of the XGBoost model using grid search and particle swarm optimization 

algorithm can accurately predict the slump of concrete, which is of significant importance 

for controlling and optimizing the concrete production process. 

1. Introduction 

Concrete slump prediction and mixture ratio optimization are crucial steps in the concrete 

preparation process, as they directly impact the quality and performance of concrete. Therefore, the 

development of effective prediction models and optimization strategies to enhance prediction 

accuracy and batching efficiency has garnered significant attention. By training on existing datasets 

using such prediction models, the slump can be predicted for different concrete mixture ratios, 

enabling the production of concrete that is better suited to meet specific requirements. 

Numerous scholars have proposed their own methods in this regard. Ji Tao et al. proposed an 

artificial neural network (ANN)-based model for predicting concrete strength and slump. The 

calculation models for average paste thickness and equivalent water-cement ratio can be obtained 

by reverse extrapolating the two prediction models [1]. Yeh et al. simulated the slump of 

self-consolidating concrete (SCC) using an artificial neural network and validated the developed 

model through response tracking plots. Their study explored the complex nonlinear relationship 

between concrete components and slump behavior, concluding that response tracking plots can be 

used for this purpose [2]. Moayedi et al. utilized the ant lion optimizer (ALO) to fine-tune neural 

networks in the field of concrete slump prediction, and their model performed well in 

approximating concrete slump [3]. Hamed Safayenikoo et al. employed vortex search algorithm 
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(VSA), multi-verse optimizer (MVO), and shuffled complex evolution algorithm (SCE) to optimize 

the configuration of a multi-layer perceptron (MLP) neural network, achieving a 33% reduction in 

prediction error [4]. 

To address this problem, we selected multiple models such as XGBoost and random forest to 

predict and compare their performance using evaluation metrics such as coefficient of determination 

and root mean square error. These machine learning models have been widely applied in various 

prediction problems and have demonstrated superior predictive capabilities in many practical 

applications. However, there is still room for improvement in their application to mixture ratio 

optimization. After conducting multiple experiments, we found that XGBoost outperformed the 

random forest model in terms of accuracy, but there was still room for improvement. To further 

enhance the predictive accuracy of the model, we introduced a hybrid algorithm combining search 

algorithms and particle swarm optimization. 

This study considers the key factors in concrete mixture ratios, including water, cement, fine 

aggregate, coarse aggregate, slag, fly ash, and water reducer, which have significant influence on 

the accuracy and practicality of the prediction model. Comparative experiments revealed that the 

combination of XGBoost model and hybrid algorithm optimization exhibited significant advantages 

over other methods in terms of both prediction accuracy and mixture ratio optimization in concrete. 

The aim of this paper is to compare multiple models through experimental analysis and identify 

the most effective model, ultimately proving the superiority of XGBoost. Finally, by combining 

XGBoost with the hybrid algorithm, we achieve precise prediction of concrete slump and 

optimization of the mixture ratio to enhance the quality and performance of concrete. The goal is to 

provide a more accurate and optimized strategy for concrete preparation, with the hope of 

widespread application in engineering. 

2. Data Collection and Statistical Analysis of Data 

2.1 Data Collection 

The data for this experiment is obtained from reference [5], which consists of over 1000 data sets. 

Each data set includes 7 concrete mixture ratios and the corresponding slump values of the concrete 

produced using those ratios. The 7 components of the mixture are water, cement, fine aggregate, 

coarse aggregate, slag, fly ash, and water reducer. However, a significant portion of the data has 

missing values for the slump. Therefore, the data sets with missing slump values were discarded, 

and we retained the remaining 295 data sets with non-empty slump values. The sample data is 

shown in Table 1. 

Table 1: Construction of a dataset for predicting porosity models. 

Water 
 3/ mkg  

Cement 
 3/ mkg  

Fine 

Aggregate 
 3/ mkg  

Coarse 

Aggregate 
 3/ mkg  

Slag 
 3/ mkg  

Fly ash 
 3/ mkg  

SP 
 3/ mkg  

Slump 
 3/ mkg  

185 225 900 746 135 90 5.85 28 

167 318.8 900 814 81.4 49.8 5.31 25.5 

167 131.3 900 772 188.6 130.2 5.31 27.3 

180 238.4 900 745 81.4 130.2 5.31 25 

180 211.6 900 771 188.6 49.8 5.31 27.5 

... ... ... ... ... ... ... ... 

169.6 109.4 940 799 157.1 108.5 4.58 27.5 

182.9 198.7 940 770 67.9 108.5 4.58 28 

182.9 176.3 940 791 157.1 41.5 3.67 26 
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2.2 Statistical Analysis of Data 

The 295 data sets were subjected to statistical analysis to calculate the mean, standard deviation, 

minimum value, and maximum value for each variable, as shown in Table 1. Additionally, the 

Pearson correlation coefficients were calculated to explore the linear relationships between 

variables, as shown in Table 2 and Figure 1. 

There is a significant negative correlation between the variables of water and water reducer. 

Increasing the amount of water tends to decrease the amount of water reducer used, and vice versa. 

The correlation coefficient between coarse aggregate and fine aggregate is -0.702177, indicating a 

significant negative correlation. Increasing the proportion of coarse aggregate leads to a decrease in 

the proportion of fine aggregate, and vice versa. This is expected since the total aggregate 

proportion is fixed. The correlations between other variables are relatively low, which may indicate 

weak associations or non-linear relationships that are not accurately captured by the Pearson 

correlation coefficient. 

There is a noticeable positive correlation between slump and water reducer. Increasing the 

dosage of water reducer leads to an increase in the slump of the concrete. This could be attributed to 

the fact that water reducers help improve the workability of the concrete [6]. 

Table 2: Statistical analysis of the data 

Feature Name Unit of 

Measurement 

Minimum 

Value 

Maximum 

Value 

Average Standard 

Deviation 

Water 3/ mkg  116.5 255.0 179.92 24.51 

Cement 3/ mkg  109.4 532.0 261.47 81.79 

Fine Aggregate 3/ mkg  30.0 1293.0 851.23 194.56 

Coarse Aggregate 3/ mkg  436.0 1226.0 838.92 153.62 

Slag 3/ mkg  0.0 375.0 89.58 74.51 

Slag 3/ mkg  0.0 270.0 82.05 52.51 

SP 3/ mkg  0.0 14.0 4.57 3.08 

Slump cm  8.5 28.5 22.90 5.55 

 

Figure 1: Correlation Coefficients between Variables and Slump 
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3. Method and Principles 

3.1 Overview of XGBoost Model 

XGBoost is an efficient machine learning algorithm based on gradient boosting that is designed 

to tackle large-scale and high-performance machine learning problems. It was developed by Tianqi 

Chen and his team at the University of Washington in 2014 and has since become an open-source 

project with widespread applications and high recognition. XGBoost offers the following key 

features: excellent predictive performance, parallel processing capability, support for various model 

forms, built-in model validation and early stopping mechanisms, powerful regularization, and the 

ability to handle sparse data and missing values [7]. 

XGBoost is an additive model composed of k base models. Assuming that the tree model to be 

trained in the t-th iteration is denoted as  it xf , we have: 
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Where 
t

iŷ  is the predicted result of sample i after the t-th iteration, and 
 1ˆ t

iy  is the predicted 

result of the previous t-1 trees. The objective function of XGBoost can be formulated as: 
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The objective function consists of two components: the loss function and regularization. The loss 

function, 
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the sum of complexities across all trees and serves as a regularization term to prevent overfitting. It 

incorporates 
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, γ  penalty coefficient for leaf nodes, T  as the number of leaf 

nodes, ω  as the leaf weights, and λ  as the weight penalty coefficient. 

The prediction of the t-th model for the i-th sample, ix
, is given by: 

)(ˆˆ
)1()(

it

t

i

t

i xfyy 


                               (3) 

Where 
 1ˆ t

iy  represents the predicted value given by the (t-1)th step model and is a known 

constant, and 
 it xf

 is the prediction of the new model to be added in this step. The objective 

function can be written as: 
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Where C is a constant. Next, we need to find an 
 it xf

 that minimizes the value of the objective 

function. Therefore, we approximate the objective function by performing a second-order Taylor 

expansion, resulting in an approximation of the objective function as: 
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the optimization of the function. Therefore, we can remove all constant terms, resulting in the 

objective function: 
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3.2 Grid Search Method 

In this study, the grid search method was used to optimize the hyperparameters of the XGBoost 

model. Specifically, the grid search method was employed to determine the maximum depth of the 

decision trees and the number of trees in the XGBoost model. The grid search method 

systematically explores multiple combinations of parameters and identifies the optimal parameter 

combination through cross-validation. In this process, a range and step size need to be specified for 

each parameter, and all possible parameter combinations are generated [8]. In the XGBoost model, 

since the maximum depth of the decision trees and the number of trees are integers, it is relatively 

easy to find the optimal solution within the specified parameter space using the grid search method. 

However, due to the potentially large search space for other floating-point parameters in the 

XGBoost model, a particle swarm optimization algorithm will be used for their optimization in 

subsequent steps. This hybrid approach of using both the grid search method and the particle swarm 

optimization algorithm ensures both model performance optimization and computational efficiency. 

3.3 Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) is an evolutionary computation technique. This method 

simulates the foraging behavior of a flock of birds. In the search space, each "bird" (referred to as a 

"particle" or an "individual") has a fitness value determined by a fitness function. Each particle 

knows its own best position (i.e., the position with the highest fitness it has found) and the globally 

best position. In each iteration, the particles update their velocities and positions to move towards 

their own best position and the globally best position [9]. The optimization process of the particle 

swarm is illustrated in Figure 2. 
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Figure 2: PSO Algorithm Process 

4. Based on the hybrid optimization of the XGBoost algorithm for slump prediction 

4.1 Evaluation Metrics 

In the experimental process, the concrete-related dataset was first read and processed. The 

dataset includes influencing factors such as water, cement, fine aggregate, coarse aggregate, and 

water reducer, as well as the slump value of concrete as the output of the model. Then, the dataset 

was divided into a training set and a test set. Due to the limited number of data in this study (295 

samples), the training set was set to 80% of the total, with 236 samples, and the test set was set to 

20% of the total, with 59 samples. 

Three evaluation metrics were used to assess the model: coefficient of determination (R2), mean 

squared error (MSE), and mean absolute error (MAE). These metrics were chosen because they can 

measure different aspects of the model's prediction performance. R2 measures the accuracy of the 

model's predictions, while MSE and MAE measure the magnitude of the prediction errors. Together, 

these three metrics provide a comprehensive evaluation of the model. 

The calculation formulas for these evaluation metrics are as follows: 
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4.2 Based on the grid search method for hyperparameter optimization in the XGBoost 

algorithm 

The specific approach to determining the values of two integer hyperparameters, namely the 

maximum tree depth (max_depth) and the number of trees (n_estimators), in the XGBoost 

algorithm using grid search is to use the coefficient of determination (R2) as the evaluation metric. 

The XGBoost model for slump prediction is built using the training dataset. As shown in Figure 3 

and Figure 4, the optimal values for max_depth and n_estimators are obtained when the R2 value is 

maximized during the training process. 

 

Figure 3: Plot of the relationship between R2 and the max_depth parameter. 

 

Figure 4: Plot of the relationship between R2 and the n_estimators parameter. 

According to the graph, it can be observed that when the maximum tree depth (max_depth) is set 

to 6 during the training process, the model achieves the highest R2 value of 0.944. As the value of 

max_depth increases, the R2 values remain below 0.944 and fluctuate around 0.935. Additionally, 

when the number of trees (n_estimators) reaches 100, the R2 value starts to stabilize. The maximum 

R2 value of 0.9441 is achieved when n_estimators is set to 123. By using the grid search method, 

the optimal values of max_depth and n_estimators in the XGBoost model are determined as 6 and 

123, respectively. 

Similarly, the grid search method is employed to determine the value ranges for three 

floating-point hyperparameters in the XGBoost model: learning rate (learning_rate), the minimum 

loss reduction required to make a further partition on a leaf node (gamma), and the subsample ratio 

of the training instances (subsample). The specified value ranges for these parameters are presented 
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in Table 3. 

Table 3: The range of float hyperparameters in the XGBoost model refers to the range of values that 

can be assigned to these parameters. 

parameters range 

learning_rate [0,0.3] 

gamma [0.1,0.5] 

subsample [0,0.3] 

4.3 Hyperparameter optimization of the XGBoost model based on the PSO algorithm. 

Based on the grid search method to determine the value ranges, the particle swarm optimization 

(PSO) algorithm is utilized to find the optimal values of three floating-point hyperparameters 

(learning_rate, gamma, and subsample) in the XGBoost model for collapse prediction. Initially, the 

population size of particles is set to 40, and the number of iterations is set to 50. The training 

process begins, and the variation of R2 for the XGBoost model with training iterations is illustrated 

in Figure 5, where the horizontal axis represents the training iterations, and the vertical axis 

represents R2. It can be observed that as the training iterations increase, the R2 of the XGBoost 

model gradually improves. When the training iterations reach 22, the R2 stabilizes around 0.972. At 

this point, the optimal values for the hyperparameters are found as follows: learning_rate = 0.1288, 

gamma = 0.0068, and subsample = 0.388. Figure 6 depicts the scatter plot of actual values versus 

predicted values. Table 4 presents a comparison of the performance on the test set between the 

XGBoost model optimized with the hybrid approach and other models. 

 

Figure 5: Plot of the variation of R2 with the number of iterations. 

 

Figure 6: Scatter plot of the actual values and predicted values. 
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Table 4: Predictive Performance of Five Machine Learning Methods on the Test Set. 

Method 2R  MSE  MAE  

Hybrid-optimized XGBoost 0.9725 0.7808 0.6087 

XGBoost 0.9392 1.7298 0.8775 

RF 0.9317 1.9417 0.9682 

LightGBM 0.9142 2.4395 1.1780 

GBDT 0.9099 2.5656 1.1235 

5. Conclusion 

In this study, a hybrid optimized XGBoost model was developed to predict the slump of concrete, 

combining grid search and particle swarm optimization (PSO) algorithms. The influence of seven 

factors including water, cement, fine aggregate, coarse aggregate, and admixture was thoroughly 

investigated. The experimental results demonstrated that the proposed model exhibited excellent 

performance on both the training and test sets, with a coefficient of determination (R2) exceeding 

0.97. 

Compared to other commonly used prediction models such as XGBoost, Random Forest (RF), 

LightGBM, and Gradient Boosting Decision Trees (GBDT), the hybrid optimized XGBoost model 

achieved higher prediction accuracy on the test set, with higher R2 scores and significantly reduced 

mean squared error (MSE) and mean absolute error (MAE). The following advantages of the hybrid 

optimized XGBoost model can be observed: 

Integration of multiple optimization methods: The hybrid optimized XGBoost model combines 

grid search and particle swarm optimization algorithms. Grid search systematically explores the 

hyperparameter combinations of the algorithm to find the best model configuration, while particle 

swarm optimization adjusts model parameters in an adaptive manner to improve performance. By 

integrating multiple optimization methods, the hybrid optimized XGBoost model can fully leverage 

the advantages of each method and enhance prediction performance. 

Higher prediction accuracy: As shown in Table 4, the hybrid optimized XGBoost model 

achieved the best performance in terms of R2, MSE, and MAE. It can better fit the data and capture 

complex relationships within the data, resulting in more accurate predictions. Compared to other 

algorithms, the hybrid optimized XGBoost model provides more accurate predictions of concrete 

slump. 

Efficient feature learning and ensemble capability: XGBoost, as the base model, is an improved 

version of gradient boosting algorithm, with powerful feature learning and ensemble capabilities. It 

can automatically learn the importance of features and perform feature selection to extract the most 

informative ones. By ensembling predictions from multiple base models, XGBoost can reduce 

model variance and improve generalization ability. 

In summary, the hybrid optimized XGBoost model, combining grid search and particle swarm 

optimization algorithms, provides a powerful and accurate tool for high-precision prediction of 

concrete slump. The findings of this study are not only of practical significance for the control and 

optimization of concrete production processes but also provide strong support and inspiration for 

related research in the field. 
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