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Abstract: In this paper, we will focus on the number, type, local stability, and global 

stability of the positive equilibrium of the predator-prey model with special Holling IV 

functional response. When the positive equilibrium is a weak focus, it can be of order one 

and stable, of order one and unstable, of higher order. Moreover, if the equilibrium is 

unique and unstable, there exists a limit cycle surrounding it. 

1. Introduction 

The predator-prey model describes the dynamic relationship between predator and prey and 

plays a significant role in explaining the inherent laws of ecosystems and describing and predicting 

changes in ecosystems. This model is often used in mineral prediction to study the internal laws of 

mineral formation. The predator-prey model was proposed by Lotka and Volterra. The model was 

improved by Holling, and he proposed three response functions of Holling type I, II, and III [1, 2]. 

Later Andrews proposed an inhibition function based on experiments [3], which is known as 

Holling type IV response function [4]. 

The typical Holling I, II, and III types represent three situations where the predator quantity 

increases uniformly with the prey, the predator rate decreases when reaching saturation, and the 

situation when it is difficult to capture when the prey density is low. The Holling IV type is an 

inhibition function, for the predator decreases as the quantity of prey increases when it reach a 

certain value. 

Our study focus on Holling type IV functional responses. Recent research on predator-prey 

models with this type of response, such as Zhang, Wu and Zhou [5], Ren and Li [6], Shang, Qiao, 

Duan and Miao [7], Zhao and Shen [8], etc., focus on latest predator-prey models, and those models 

mostly metamorphosis from the classical  models to different degrees.  

This paper will discuss the classical predator-prey model with Holling IV functional response. 

There are also some research results about it, such as Ruan and Xiao[9] proved that the system 

exists numerous bifurcations, including saddle-node bifurcation, supercritical and subcritical Hopf 
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bifurcation, homoclinic bifurcation; Li and Zhu[10] proved that for the systems with Holling III and 

Holling IV type functional responses the cyclicity of the limit periodic set is at most 2 through the 

singular perturbation theory, and indicate the regions in parameter space where the corresponding 

limit periodic set has cyclicity at most one or two. 

We will mainly explore the dynamics of the system from the geometric perspective of the critical 

curve, discuss the number, type, local and global stability of the equilibria of the system, and the 

existence of the limit cycle in the system. 

2. Predatory-prey models and the basic properties 

The classic predatory-predatory model is as follows[11]: 

ẋ = rx (1 −
x

K
) − f(x)y,

ẏ = y(−α + βf(x)),
                                                (1) 

In (1), x represents the prey, y represents the predator, r is the intrinsic growth rate of the prey, K 

is the environmental capacity, α  is the mortality rate of the predator, β is the transformation 

efficiency, and f is the functional response, in other words, the predation rate of predators changes 

with the density of prey. Here we require x, y, r, K, α, β are positive. 

The simplified Holling Type IV functional response function is as follows: 

     f(x) =
x

ax2+b
                                                             (2) 

The simplified Holling IV functional response has fewer parameter variables than the original 

one. 

To study the dynamics of the differential equation (1) with the functional response (2), the 

parameters of the equation are first reduced equivalently.  

According to relevant research methods of various predator-prey models[12], we transform the 

parameters r and K into 1 through the scale transformation of space and time. Then we suppose c =
b

a
, f̃ = af and readjust the scale of prey by supposing ỹ =

y

a
. Thus  system (1) becomes the following 

differential equation: 

ẋ = x(1 − x) − f̃(x)ỹ,

ẏ = αỹ(−1 + γf̃(x)),
                                                    (3) 

here γ =
β

αa
. Because we do not restrict the symbols of a, we require γ ≠ 0,  y ≠ 0 and x ∈ (0,1). 

The response function becomes: 

f̃(x) =
x

x2+c
                                                               (4) 

This action inverts f into a single-parameter function where c ≠0. Note that the new variable 

needs ỹγ > 0 because the symbols of both are consistent to a. 

When a < 0, the sign change of the variable affects the Jacobian matrix of the differential 

equation and thus the calculation of the type and other properties of the equilibria, but has no effect 

on the number of the equilibria, and the position will only be axisymmetric along the x-axis. 

2.1. The number of the equilibrium 

For the number of singularities, we give the following proposition: 

Proposition 1. For the system (3), when its functional response is (4), the following conclusion 
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holds: 

(i) If c ∈ [1, +∞): 
- When γ ∈ (1 + c,+∞), the system has only one equilibrium; 

- When γ ∈ (−∞, 0) ∪ (0,1 + c], the system has no equilibrium. 

(ii) If c ∈ (0,1): 

- When γ ∈ (2√c, 1 + c), the system has two equilibria; 

- When γ ∈ {2√c} ∪ [1 + c, +∞)  the system has one equilibrium; 

- When γ ∈ (−∞, 0) ∪ (0,2√c),  the system has no equilibrium. 

(iii) If c ∈ (−1,0): 
- When γ ∈ (−∞, 0) ∪ (0,1 + c),  the system has one equilibrium; 

- When γ ∈ [1 + c,+∞),  the system has no equilibrium. 

(iv) If c ∈ (−∞,−1]: 
- When γ ∈ (−∞, 1 + c),  the system has one equilibrium; 

- When γ ∈ [1 + c, 0) ∪ (0,+∞),  the system has no equilibrium. 

Proof. Looking at the second term of the differential equation, it is easy to see that the condition 

of −1 + γf(x) = 0 guarantees the existence of the equilibrium and we can verify that ỹγ > 0 holds 

at the same time. Then we just need to check the image of the function f and find the number of the 

intersections of the curves and the horizontal line y =
1

γ
.                              

2.2. The distribution of the equilibrium 

In this part, we will discuss mainly about distribution and also some other properties of the 

equilibrium. Suppose τ = αt, the system (3) is transformed to: 

αx′ = x(1 − x) − f(x)y,

y′ = y(−1 + γf(x)),
                                             (5) 

Notice that (3) and (5) has the same global dynamics. When 0 < α ≪ 1, τ is called slow time, 

and the system (5) is slow system. Correspondingly, the system (3) is called the fast system. To 

explore the global dynamics of the system (3) and (5), we consider the singular perturbation 

theory[see e.g. 13, 14, 15, 16]. 

When α → 0, we get the layer system: 

ẋ = x(1 − x) − f(x)y,
ẏ = 0,          

                                               (6) 

and the reduced system: 

0 = x(1 − x) − f(x)y,

y′ = y(−1 + γf(x)),
                                              (7) 

notice the critical set: 

M0 = {(x, ay) ∈ ℝ+
2 |x(1 − x) − f(x)y = 0}                          (8) 

it consists of the positive or negative part of the axis-y and the critical curve: 

S0 = {y = C(x) ≜ (1 − x)(x
2 +             c)|x ∈ (0,1)}         (9) 

then transform the reduced system (7) to 1-dimension system: 

C′ (x)
dx

dτ
= C(x)(−1 + γf(x))                                   (10) 
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and we obtain the follow proposition. 

Proposition 2. For critical curves S0 and reduced systems (7), the following conclusions hold: 

(a) When c ∈ [1, +∞), the curve S0  strictly decrease in (0,1), and the unique equilibrium (if 

exists) of  the system(7) is stable and hyperbolic; 

(b) When c ∈ (
1

3
, 1), the curve S0 strictly decrease in (0,1), and if there are two equilibria, the 

left one is stable and hyperbolic, and the right one is unstable and hyperbolic; if there is exactly one 

equilibrium, then it is stable and hyperbolic; 

(c) When c =
1

3
, S0 monotonically decreases in (0,1) and has a unique critical point at x = xc =

1

3
. 

If there are two equilibria, the left one is stable and hyperbolic and the other one is unstable and 

hyperbolic; and if there is a unique equilibrium, it is also stable; 

(d) When c ∈ (0,
1

3
), the curve S0 has a local minimum point x1 and a local maximum point x2, 

and the curve decreases in (0, x1), (x2, 1) and increases in (x1, x2). Assume that the reduced system 

has two equilibria, then both xL and xR locate in (x1, 1), and xL is stable(unstable) and hyperbolic if 

it locates on the right-(left-)hand side of x2, xR is stable(unstable) and hyperbolic if it locates on the 

left-(right-)hand side of x2 . If there is a unique equilibrium, then the equilibrium is stable and 

hyperbolic when it locates in (0, x1) ∪ (x2, 1), and it is unstable and hyperbolic when it locate in 
(x1, x2); 

(e) When c ∈ (−1,0), the curve S0 has a local maximum point x1 such that 0 < √−c < x1 < 1. 

Assume the reduced system has a unique equilibrium x∗ , then it satisfies x∗ ≠ √−c , and it is 

stable(unstable) and hyperbolic when it is on the left-(right-) hand side of x1. 

(f) When c ∈ (−∞,−1], the curve S0 strictly increase in (0,1), and if the system has a unique 

equilibrium, it is stable and hyperbolic. 

Proof. First we get the differentiation of C(x): 

C′(x) = −3x2 + 2x − c                                     (11) 

It reaches the maximum value yc =
1

3
− c at xc =

1

3
 , and the boundary values at this time are 

C′(0) = −c and C′(1) = −c − 1. Next we study the layer system (6), we can see that when f > 0, 

the upper part of the curve would flow horizontally to the left, while the bottom of the curve would 

flow horizontally to the right, and the opposite would be true for f < 0. By computing the sign of ẏ 

and ẋ, we get the dynamics of the system (7) restrict on S0. 

The Figure 1, Figure 2, Figure 3, and Figure 4 completely describe the proposition 2 from (a) to 

(f).  

Notice the case when c ∈ (0,
1

3
). If the system has two equilibria, by computing C′(c) and C′(√c), 

we have 0 < x1 < c < x2 < 1  and √c < x2  (√c > x2 ) when 0 < c <
1

4
 (
1

4
< c <

1

3
). So picture 

(d11), (d12) only exist when 0 < c <
1

4
 and (d14), (d15) only exist when 

1

4
< c <

1

3
. If there is one 

equilibrium, we have 0 < x∗ < c < x2 or  x∗ = √c. Picture (d21), (d22), (d23) display the former 

case and  (d23) , (d24) , (d25)  display the latter case when 0 < c <
1

4
, c =

1

4
,
1

4
< c <

1

3
. This 

conclusion will be useful in the discussion later. 

Returning to the system (3) and (5), notice that equilibria do not depend on whether α is non-

zero or not. Therefore, the position of the equilibria is the same to Proposition 2. According to 

Fenichel's theorem[13], if the equilibrium of the Proposition 2 is hyperbolic, then the corresponding 

equilibrium of the system (3) and (5) have the same hyperbolic properties. In addition, local 

stability can be observed combining with the orbits of the system (6) and (7). If both are stable, then 

we find the equilibria of the system (3) and (5) are also locally stable. We will accurately discuss 
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the stability of the equilibria in the next part. 

 

Figure 1: The dynamics of system (7) with corresponding parameters 

 

Figure 2: The dynamics of system (7) with c ∈ (0,
1

3
) and two equilibria 

 

Figure 3: The dynamics of system (7) with c ∈ (0,
1

3
) and one equilibrium 
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Figure 4: The dynamics of system (7) with corresponding parameters 

2.3 The local and global dynamics 

In order to avoid the influence of the sign of a on the Jacobian matrix and determinant, we return 

to the original differential equation system (1). We still transform the r and K into 1 with the same 

method. If a > 0,  we do the same process as f̃(x) = af(x) and ỹ =
y

a
,  else the process will be  

f̃(x) = −af(x) and ỹ = −
y

a
. Then we have γ, y, f(x) > 0, and the system will be transformed into 

the system (3) with the following functional response: 

f̃(x) = sign(a) ⋅
x

x2+c
                                                      (12) 

and the proposition 1, 2 still hold. 

3. The type and local stability of the equilibrium 

First we compute the Jacobian matrix of the system (3) with functional response (12): 

J(x, y) = (
1 − 2x − f′(x)y −f(x)

αγf′(x)y −α(1 − γf(x))
)                              (13) 

and we compute the Jacobian matrix of the boundary equilibrium (0,0): 

J(0, 0) = (
1 0
0 −a

)                                                      (14) 

when c ≠ −1, the system (3) has another boundary equilibrium (1,0), and the Jacobian matrix: 

J(1,0) = (
−1 −sign(a) ⋅

1

1+c

0 −α + sign(a) ⋅
αγ

1+c

)                                    (15) 

For α > 0 we know (0,0)  is a saddle，and the type of (1,0) is determined by γ and c. For 

equilibrium locates in {(x, y) ∈ ℝ+
2 |x ∈ (0,1)}, we have y =

x(1−x)

f(x)
 and −α(1 − γf(x)) = 0, then 
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we compute the characteristic function: 

ℱJ = λ
2 − C′(x)f(x)λ + αγx(1 − x)f′(x)                              (16) 

here we redefine C(x) ≜ sign(a) ⋅ (1 − x)(x2 + c) and thus C′(x) = sign(a) ⋅ (−3x2 + 2x − c). 

If there are two equilibria EL and ER,  by proposition 1, we have c ∈ (0,1) and γ ∈ (2√c, 1 + c), 

thus the equilibrium (1,0) is a stable node. Consider the characteristic function (16), we know ER is 

a saddle and EL is a stable (unstable) node or focus when C′(xL) < 0 (C′(xL) > 0), and is a weak 

focus or center when C′(xL) = 0, and we will discuss it separately. Thus, we obtain a conclusion: 

(1) For c ∈ (0,1), ER is a saddle; 

(2) For c ∈ [
1

3
, 1), EL is a stable focus or node;  

(3) For c ∈ (
1

4
,
1

3
), EL is a stable focus or node, an unstable focus or node, a weak focus or center 

according to its position;  

(4) For c ∈ (0,
1

4
), EL is an unstable focus or node; 

If the system(3) has a unique equilibrium E∗. By using the same method, we obtain the following 

discussion: 

(1) For c ∈ [1, +∞), E∗ is a stable focus or node; 

(2) For c ∈ (
1

3
, 1), E∗  is a stable focus or node when x∗ ≠ √c and it is stable and degenerate 

when x∗ = √c; 

(3) For c =
1

3
, E∗ is a weak focus or center when x∗ =

1

3
, and it is the same as (1) and (2) for the 

other cases; 

(4) For c ∈ (0,
1

3
): When x∗ ≠ √c, E∗ is a stable focus or node if x∗ ∈ (0, x1) and unstable focus 

or node if x∗ ∈ (x1, x2), it is a weak focus or center when x∗ = x1; when x∗ = √c, E∗ is an unstable 

degenerate node if x∗ ∈ (x1, x2) and a stable degenerate node if x∗ ∈ (x2, 1), and it is nil-potent 

when x∗ = x2 = √c =
1

2
; 

(5) For c ∈ (−1,0): if x∗ ∈ (√−c, 1), E∗  is a saddle; if x∗ ∈ (0, √−c), E∗  is a stable focus or 

node; 

(6) For c ∈ (−∞,−1], we have E∗ is a stable focus or node. 

Thus we have provided the types and local stability of equilibrium in most cases.  

Next, we will discuss in detail the case when the equilibrium is a weak focus or center. 

According to related book[17], for such a  system: 

   ẋ = −σy + p(x, y),

ẏ = σx + q(x, y),
                                                        (17) 

with σ > 0 and 

 p(x, y) = ∑ aiji+j≥2 xiyj,

q(x, y) = ∑ biji+j≥2 xiyj,
                                                (18) 

if the following equation is non-zero, then the first order Lyapunov constant of the system is: 

ℒ1 =
3π

2
σ−1 (3(a30 + b03) + (a12 + b21)  − σ

−1(2(a20b20 − a02b02) − a11(a20 + a02) +

b11(b20 + b02)))                                                    (19) 

and the equilibrium is a weak focus of order 1, which is unstable(stable) when ℒ1 > 0(ℒ1 < 0). 

Consider the methods from relevant research[18], suppose u = x − x∗, v = y − y∗, and change 
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the time scale by  supposing u = f(x∗)ϵand v = ωη ≜ √αγf(x∗)f′(x∗)y∗η , then the system is 

transformed into: 

dϵ

dτ
= −η −

(2+f″(x∗)y∗)f(x∗)

2ω
ϵ2 − f′(x∗)ϵη

                                    −
f‴(x∗)y∗f

2(x∗)

6ω
ϵ3 −

1

2
f″(x∗)f(x∗)ϵ

2η + O(|(ϵ, η)|4),
                              

 
dη

dτ
= ϵ +

αγf″(x∗)y∗f
2(x∗)

2ω2
ϵ2 +

αγf′(x∗)f(x∗)

ω
ϵη

                                     +
αγf‴(x∗)y∗f

3(x∗)

6ω2
ϵ3 +

αγf″(x∗)f
2(x∗)

2ω
ϵ2η + O(|(ϵ, η)|4),

                     (20) 

then we compute the first order Lyapunov constant: 

ℒ1 =
3πf(x∗)

4ωf′(x∗)
ℒ0                                                          (21) 

here ℒ0 = −f’’’(x∗)y∗f(x∗)f’(x∗) + (2 + f’’(x∗)y∗)(f’’(x∗)f(x∗) + f’(x∗)
2)  and we have C’(x∗) =

−3x∗
2 + 2x∗ − c = 0, thus: 

ℒ0 =
16(1−x∗)x∗

5(24x∗
2−19x∗+3)

(x∗
2+c)

6                                                 (22) 

the sign of ℒ1 depends on z(x∗) = 24x∗
2 − 19∗

2 + 3 and z(x) has two real roots: 

                                          r1 =
19−√73

48
, r2 =

19+√73

48
                                                (23) 

and we can discuss for the case when the equilibrium is a weak focus or center: 

(1) For c ∈ (
1

4
,
1

3
) and the system (3) has two equilibria, if EL is a weak focus or center, then 

xL = x2 ∈ (
1

3
,
1

2
) ⊂ (r1, r2) which means EL is a stable weak focus of order 1; 

(2) For c ∈ (0,
1

3
) and the system (3) has a unique equilibrium, if  E∗ is a weak focus or center,  

then xL = x1 ∈ (0,
1

3
). Thus when x∗ = x1 < r1, E∗ is an unstable weak focus of order 1; when x∗ =

x1 > r1 , E∗  is a stable weak focus of order 1; when x∗ = x1 = r1 , ℒ1 = 0 is not the first order 

Lyapunov constant and should calculate a higher order differentiation of the Poincaré map, and we 

won’t further discuss it in this paper; 

(3) For c =
1

3
 and γ =

4

3
, we have x∗ = xc =

1

3
∈ (r1, r2), so E∗ is a stable weak focus of order 1. 

In this part we obtain the type and local stability of the equilibrium in almost all the cases. Next, 

we will discuss the global dynamics of the system (3). 

3.1 Global stability of the stable equilibrium 

For the equilibrium that is locally stable, we focus on whether it is globally stable or not. We 

have the following proposition: 

Proposition 3. For system (3) with functional response (12) and c ∉ (0,
1

3
), if the equilibrium is 

locally stable, then it is globally stable. 

Proof. Notice that when c ∉ (0,
1

3
), the system has a unique equilibrium if exists. Then consider 

the Dulac criterion [19]. Set 

H(x, y) =
1

f(x)y
= −sign(a) ⋅

x2+c

xy
                                           (24) 
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and correspondingly we have 

(P(x, y), Q(x, y)) = (x(1 − x)f(x)y, αy(−1 + γf(x)))                    (25) 

then: 

Δ :=
∂(HP)

∂x
+
∂(HQ)

∂y
=

C′(x)

y
=

{
 
 

 
 < 0,  x ∈ (0,1),        c ∈ (

1

3
, +∞) ,

≤ 0, x ∈ (0,1),        c =
1

3
,

< 0, x ∈ (0, √−c), c ∈ (−1,0),

< 0, x ∈ (0,1),        c ∈ (−∞,−1],

            (26) 

here for the case when Δ ≤ 0, the equality holds if and only if x =
1

3
, but x =

1

3
 is not an orbit of 

the system (3) with functional response (12). 

According to the Dulac Criterion, we prove that the system does not have a cycle, so the locally 

stable equilibrium is also globally stable.  

In this way, we partially obtained the relationship between global stability and local stability of 

the system. However, locally stable equilibrium may not necessarily be globally stable when c ∈

(0,
1

3
), as we will demonstrate below. As shown in Figure 5, we show the orbit of system (3) with a 

unique equilibrium in four different parameters, where all equilibrium are stable. 

 

Figure 5: The orbit of system (3) with corresponding parameters 

In Figure 5, orbits in figures(i), (iii), (iv) are consistent with the result of the proposition, that is, 

there is no limit cycle within the corresponding range. However, the situation shown in the 

figure(ii)is different. In this case, the system (3) has two limit cycles, of which the outer limit cycle 

is semi-stable, it is the ω-limit of its inner orbits and the α-limit of its outer orbits; the inner limit 

cycle is an unstable limit cycle; there is a stable equilibrium inside the inner limit cycle.  

Here we discuss the global dynamics of stable equilibrium, next we will discuss the global 
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dynamics of the unstable equilibrium. 

3.2 Global dynamics of the unstable equilibrium 

For the equilibrium that is not stable, we also focus on the limit cycle. We have the following 

proposition: 

Proposition 4. For system (3) with functional response (12), if the equilibrium is unique locally 

unstable, then there exists at least a limit cycle surrounding it. 

Proof. According to the previous conclusion, system (3) satisfies the propositional condition only 

if c ∈ (0,
1

3
) and x∗ ∈ [x1, x2). Note that the x-axis and y-axis are invariant sets in the system, the 

boundary equilibrium (0,0) is a saddle and (1,0) is a saddle or a stable and degenerate node; when 

x = 1 and y > 0,  we have ẋ < 0. Thus, the region  

{(x, y)|x ∈ (0,1), y ∈ (0,+∞)}                                             (27) 

is positive invariant.  

Next refer to methods in relevant research[20], give the upper bound of the region y = k − αγx, 

and we have: 

αγẋ + ẏ = αγ(1 − x)x − αy                                               (28) 

notice that for x ∈ (0,1), we have y ≥ k − αγ and x(x − 1) < 1, thus: 

αγẋ + ẏ ≤ αγ − α(k − αγ) = αγ(1 + α) − αk                             (29) 

when k > γ(1 + α), the orbit through y = k − αγx all positively enter the region: 

Ω0 = {(x, y)|x ∈ (0,1), y ∈ (0, k − αγx)}                                    (30) 

Thus the region Ω0 is positive invariant. When  k is big enough, the region covers the unstable 

equilibrium. By removing a neighborhood of the equilibrium, we find an annular field with all the 

orbit positively enter the field. According to Poincaré-Bendixson annulus theorem, there is at least 

one limit cycle in the field. Notice that when system has two equilibria, the left one can also be 

locally unstable. In this case γ < 1 + c, so the boundary equilibrium (1,0) is a stable node. Thus 

system (3) has orbits flow to that point, which means the region Ω0 is not positive invariant. And 

we will show that in Figure 6. 

In Figure 6, (v) is consistent with the result of the proposition with a unique equilibrium that is 

unstable and has a limit cycle surrounding it. And (vi) is the case we have mentioned where the left 

equilibrium is unstable and the boundary equilibrium (1,0) is the ω-limit of the orbits. Notice that 

not all the orbits must flow to (1,0). In Figure 6 (vii), the left equilibrium is stable, and some orbits 

flow to EL and others flow to (1,0). Another situation is the case of (viii), there is a stable limit 

cycle in the system surrounding an unstable equilibrium, and some orbits flow to the limit cycle and 

others flow to (1,0). We can also compute the equilibria at infinity of the system by Poincaré 

compactification [see e.g. 21]. 

In conclusion, when the system (3) has two equilibria and the left one is unstable, the existence 

of the limit cycle depends on the parameters.  
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Figure 6: The orbit of system (3) with corresponding parameters 

4. Conclusion 

For system (3) with functional response (12), we prove that the following statements hold: 

(1) System (3) has at most two positive equilibria and could have 0, 1, 2 positive equilibrium for 

different parameters.  

(2) When the system has two positive equilibria, the left one could be a stable focus or node, an 

unstable focus or node, a stable weak focus of order 1 for different parameters and the right one is a 

saddle. 

(3) When the system has a unique positive equilibrium, then: 

- The equilibrium could be a stable focus or node, an unstable focus or node,a stable weak focus 

of order 1, an unstable weak focus of order 1, a weak focus of higher order, a saddle for different 

parameters. 

- The locally stable equilibrium is not always globally stable, but if c ∉ (0,
1

3
), the local stability 

is equivalent to global stability. 

- If the equilibrium is locally unstable, then there exists a limit cycle surrounding it. 
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