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Abstract: Carbon finance play an essential role in the promotion of carbon peaking and 

carbon neutrality, and one support for the development of carbon finance is the structured 

deposit launched by banks. This article first examines the pricing rationality of a carbon 

finance structured deposit by using risk neutrality pricing, GARCH model, Cholesky 

decomposition, BS Model, Monte Carlo simulation, geometric Brownian motion, Heston 

model and Merton jump-diffusion model, etc., parameters used for asset pricing are all 

estimated with reasonable basis. Moreover, this article also optimized its design from the 

perspectives of increasing market participants and risk diversification. Finally, several 

enlightenments are summarized and put forward.  

1. Introduction 

So far, there have been eight regional and one national trading centres for carbon emission 

allowance in China, and a great number of researches have been carried out based on carbon 

emission allowances, including asset pricing issues [1], allocation strategies [2], future price 

forcasting [3] and intermarket risk spillovers [4]. 

One support for the development of carbon finance is the structured deposit launched by banks. 

For instance, in Nov 2014, Industrial Bank (the first Equate Bank in China), Shenzhen Branch, 

combined a deposit with a carbon emission allowance; In May 2021, China CITIC Bank released 

the first structured deposit linked to a carbon neutral bond; In May 2021, Industrial Bank and 

Shanghai Clearing House issued the first structured deposit linked to a carbon neutral bond index. 

This article aims to examine the pricing rationality of a certain carbon finance structured deposit 

mentioned above and optimize its design for better meeting diversified needs of investors. 

2. Introduction of the selected product 

We choose the carbon finance structured deposit launched by Industrial Bank in 2014 as the 
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research object, whose purpose of issuance is encouraging enterprises to carry out carbon emissions 

trading and thus establish awareness of environmental responsibility. as the cash flow structure of 

the floating portion is similar to that of a European style call option, which is relatively simple and 

has room for improvement in both the rationality of asset pricing and meeting the needs of investors. 

The basic information is listed in Table 1. 

Table 1: Basic Information of the Product. 

Launcher Industrial Bank 

Amount RMB 10 million 

Term of deposit One year, from 2014.11.26 to 2015.11.26 

Underlying asset Shenzhen carbon emission allowance 

Expected annual return 4.1% (1.9% fixed and 2.2% expected floating) 

Interest compensation 
Additional payment of 1,000 tons of Shenzhen carbon emission 

allowances on the due date 

Early termination rights None (European-style option) 

Earning structure 

1.9% + 55% ∗ 𝑚𝑎𝑥 ((
𝑆𝑇

𝑆0
− 1) , 0) ≥ 1.9% 

Participation rate: 55% 

𝑆𝑇: Price on Nov 27, 2015 

𝑆0: Price on Nov 27, 2014 

3. Pricing of the Fixed Income Portion 

The one-year deposit can be regarded as a zero-coupon bond: the principal and interest will be 

paid together only at maturity. The price of the fixed income portion is about RMB 9.8645 million. 

1) 𝐹 = Investment amount = RMB 10 million; 

2) 𝑟𝑓𝑖𝑥 = Product fixed rate of return = 1.9%; 

3) 𝑟𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡= Interest rate of one-year RMB fixed deposit of Industrial Bank in 2014 = 3.3%; 

4) 𝑇 = 1 year. 

𝑉𝑓𝑖𝑥 =
𝐹+𝐹∗𝑟𝑓𝑖𝑥

(1+𝑟𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡)𝑇 =
10+10∗1.9%

(1+3.3%)1 ≈ 9.8645                                    (1) 

4. Pricing of the Floating Portion (European Call Option) 

4.1. Constant Volatility 

Volatility is a key parameter for option pricing. At first, we assume that the volatility is constant 

in the whole period, so it can be easily estimated by using historical data. Regardless of the early-

established stage with high volatility, we use the transaction records from January 2nd, 2014 to 

November 26th, 2014. After excluding missing values, a total number of 211 historical data are 

obtained, and the estimated value of annual volatility is 0.0492. 

4.2. Time-varying Volatility 

However, carbon emission allowances are not traded on a daily basis and their prices can 

experience sudden changes between consecutive trading days, resulting in high volatility and 

uncertainty. By visualizing the return series, it is evident that there exists a significant 

35



 

agglomeration effect of volatility. Hence, the former assumption of constant volatility is not 

reasonable, indicating that the volatility sequence may have an ARCH effect [5], and it is suitable to 

be fitted by the GARCH model [6]. The result of ADF test shows that the test statistic is 4.422 ∗
10−11 < 0.05, indicating that the return series is stationary. However, the Ljung-Box test statistics 

of the residual term are all smaller than 0.05, rejecting the null hypothesis of white noise and 

proving the presence of an ARCH effect. 

Generally, a GARCH (1,1) model is sufficient to describe the conditional heteroscedasticity of a 

sequence. The stabilized fitting parameters are shown as follows. After getting the estimated model, 

forecast the next daily volatility with historical data of the previous month and then annualize it. 

The estimated value of annual volatility is 0.0569 > 0.0492, indicating that the previous assumption 

of constant volatility will result in an undervaluation of the floating portion.  

Besides, by repeating the above estimation on a daily basis, we can get the ARCH-fitted 

volatility series, as is shown in Figure 1. This curve can be further used in the next chapters. 

 

Figure 1: ARCH-fitted volatility of SZEA. 

4.3. Pricing-based on BS Model 

1) 𝑆0 = initial price = the closing price of SCEA on Nov 27, 2014 = 39.7; 

2) 𝐾 = expiration exercise price, 𝐸(𝐾) = 𝑆0, set 𝐾 = 𝑆0 = 39.7; 

3) 𝑟𝑓 = risk-free rate of return = the one-year treasury bond yield announced by the central bank 

in 2014 = 3.6%; 

4) 𝑇 = one year; 

5) 𝜎 = 0.0569, estimated by the former GARCH (1,1) model. 

𝑁(𝑑1) = 𝑁 (
ln (

𝑆0

𝐾 ) + (𝑟𝑓 +
𝜎2

2 ) ∗ 𝑇

𝜎√𝑇
) = 0.7457                                  (2) 

𝑁(𝑑2) = 𝑁(𝑑1 − 𝜎√𝑇) = 0.7271                                      (3) 

𝐶0 = 𝑆0 ∗ 𝑁(𝑑1) − (𝐾𝑒−𝑟𝑇) ∗ 𝑁(𝑑2) = 1.7585                                                                (4) 
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6) Expected return on the floating portion, where 55% is the participation rate in Table 1: 

𝐸(𝑅𝑓𝑙𝑜𝑎𝑡) = 𝐸 (55% ∗ 𝑚𝑎𝑥 ((
𝑆𝑇

𝑆0
− 1) , 0)) , 55% ∗ (𝐸(𝑆𝑇) − 𝑆0) = 𝑆0 ∗ 𝐸(𝑅𝑓𝑙𝑜𝑎𝑡) (5) 

And because 𝐸(𝑆𝑇) − 𝑆0 = 𝐶0 ∗ 𝑒𝑟𝑓𝑇, hence 𝐸(𝑅𝑓𝑙𝑜𝑎𝑡) =
55%∗𝐶0∗𝑒

𝑟𝑓𝑇

𝑆0
. 

7) 𝐹 = Investment amount = RMB 10 million, then the price of the floating portion is about 

RMB 0.2438 million. 

𝑉𝑓𝑙𝑜𝑎𝑡1
=

𝐹 ∗ 𝐸(𝑅𝑓𝑙𝑜𝑎𝑡)

(1 + 𝑟𝑓)𝑇
=

10 ∗ 55% ∗ 1.7585 ∗ 𝑒0.036∗1

(1 + 0.036) ∗ 39.7
= 0.2438                   (6) 

4.4. Pricing-Monte Carlo Simulation Based on Geometric Brownian Motion 

The key advantage of Monte Carlo simulation [7] over B-S analytical solutions is its 

applicability to pricing various types of assets, including American options and option portfolios. 

1) The formula for Monte Carlo simulation: 

𝑆𝑇 = 𝑆0𝑒
(𝑟−

𝜎2

2 )𝑇+𝜎𝜀√𝑇 
                                                             (7) 

2) Generate standard normal distribution randoms; 

3) Simulate 20000 times to obtain 20000 different paths, as is shown in Figure 2; 

4) Similarly, expected return and pricing of the floating portion: 

𝐸(𝑅𝑓𝑙𝑜𝑎𝑡) = 55% ∗
1

20000
∗ ∑ 𝑚𝑎𝑥 ((

𝑆𝑖𝑇

𝑆0
− 1) , 0)20000

𝑖=1                                          (8) 

𝑉𝑓𝑙𝑜𝑎𝑡2
=

𝐹∗𝐸(𝑅𝑓𝑙𝑜𝑎𝑡)

(1+𝑟𝑓)
𝑇 ≈ 0.2430                                       (9) 

 

Figure 2: Geometric Brownian Motion. 

4.5. Pricing-Monte Carlo Simulation Based on Heston Stochastic Volatility 

1) Basic formula put forward by Heston [8], which is similar to geometric Brownian motion but 

assume a time-varying variance v that also follows a random process: 
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𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + √𝑣𝑆𝑡𝑑𝑍𝑡1                                                (10) 

𝑑𝑣𝑡 = 𝑘(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝛿√𝑣𝑡𝑑𝑍𝑡2                                              (11) 

2) 𝜃 is the long-term average of 𝑣. This parameter can be estimated as the squared constant 

annual volatility in chapter 4.1; 

3) 𝑘 is the adjustment coefficient of 𝜃. Referring to other models, this parameter can be set to 1 

since (𝜃 − 𝑣𝑡) is likely to be treated as excess return or premium; 

4) 𝛿 is the volatility of 𝑣. This parameter can be estimated by using the series in Figure 1; 

5) In reality, these parameters may all be immeasurable functions of 𝑆𝑡, so they are connected 

with each other by sophisticated distributions and can be estimated simultaneously. The approaches 

above just provide simplified ideas for parameter estimation; 

6) Monte Carlo simulation formulas, where the two randoms correlate with each other: 

𝑆𝑇 = 𝑆0𝑒(𝑟−
𝑚𝑎𝑥(𝑣𝑇,0)

2
)𝑇+√𝑚𝑎𝑥(𝑣𝑇,0)𝜀2√𝑇

                                       (12) 

𝑣𝑇 = 𝑣0 + 𝑘(𝜃 − 𝑚𝑎𝑥 (𝑣0, 0))𝑇 + 𝛿√𝑚𝑎𝑥 (𝑣0, 0)𝜀1√𝑇                                               (13) 

7) Generate new independent randoms by Cholesky decomposition. Cholesky decomposition can 

be applied to positive definite matrices 𝐴, where 𝑥𝑇𝐴𝑥 > 0. After the decomposition, the lower 

triangle matrix 𝐿  satisfies 𝐴 = 𝐿𝐿𝑇 . If the correlation coefficient matrix of 𝜀1, 𝜀2: (
1 𝜌
𝜌 1

)  is 

subjected to Cholesky decomposition, a lower triangular matrix (
1 0
𝑎 𝑏

) can be obtained. Hence, 

new independent randoms can be set as 𝑤1 = 𝜀1  and 𝑤2 = 𝑎𝜀1 + 𝑏𝜀2 . The parameter 𝜌  can be 

estimated by the closing price series and ARCH-fitted volatility series in Figure 1; 

8) Similarly, using the new randoms 𝑤 for Monte Carlo simulation. Simulate 20000 times to 

obtain 20000 different paths. The price of the floating portion is about 0.2532 million. It can be seen 

from Figure 3 that the variance 𝑣 tends to approach its long-term mean level 𝜃 over time. 

 

Figure 3: Heston-volatility. 

4.6. Pricing-Monte Carlo Simulation Based on Merton Jump Diffusion 

1) Put forward by Merton [9], for the fact that the prices of underlying assets may experience 

sudden jumps due to unexpected market extreme events; 

2) Basic formulas are listed below. The total distribution is the combination of a discrete 

distribution Poisson and a continuous distribution; 

3) 𝑃𝑡 is a Poisson process with intensity 𝜆𝑑𝑡, the parameter 𝜆 can be set as 0.2, which assumes 
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one extreme event occurs every 5 years (recall the worldwide financial crisis in 2008, the Chinese 

stock market crash in 2015 and the pandemic starts from 2020); 

4) 𝐽  represents the magnitude of the jump and follows a lognormal distribution, 𝑟𝐽  is the 

correction term for the jumping drift, where 𝜇𝑗  is the minimum return and 𝛿2  is the highest 

volatility occurs during extreme events, which can also be estimated by the series in Figure 1. 

𝑑𝑆𝑡 = (𝑟 − 𝑟𝐽)𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑍𝑡 + 𝐽𝑆𝑡𝑑𝑃𝑡 (14) 

𝑙𝑛(1 + 𝐽)~𝑁(𝑙𝑛(1 + 𝜇𝑗) −
𝛿2

2
, 𝛿2) (15) 

𝑆𝑇 = 𝑚𝑎𝑥(𝑆0, 0)𝑒
(𝑟−𝑟𝐽−

𝜎2

2
)𝑇+𝜎𝜀1√𝑇+𝜀3(𝑒𝜇+𝛿𝜀2−1)

= 𝑚𝑎𝑥(𝑆0, 0)𝑒
(𝑟−𝜆(𝑒

𝜇+
𝛿2

2 −1)−
𝜎2

2
)𝑇+𝜎𝜀1√𝑇+𝜀3(𝑒𝜇+𝛿𝜀2−1)

 
(16) 

5) Similarly, using three independent randoms for Monte Carlo simulation. Simulate 20000 

times to obtain 20000 different paths, as is shown in Figure 4. The price of the floating portion is 

about 0.4801 million. It can be seen from Figure 4 that the paths fluctuate significantly after taking 

into account extreme scenarios. 

 

Figure 4: Merton Jump. 

4.7. Pricing-Multiple Situations 

Taking into account all the pricings provided by the four models, an expected pricing for the 

floating portion can be obtained. It is worth noting that since carbon market fluctuations are not as 

volatile as the stock market, we only give a small weight of 5% to the Merton jump diffusion model 

roughly equals to the significance level. 

𝑉𝑓𝑙𝑜𝑎𝑡 = 95% ∗ (
𝑉𝑓𝑙𝑜𝑎𝑡1

+ 𝑉𝑓𝑙𝑜𝑎𝑡2
+ 𝑉𝑓𝑙𝑜𝑎𝑡3

3
) + 5% ∗ 𝑉𝑓𝑙𝑜𝑎𝑡4

≈ 0.2583          (17) 

5. Pricing of the Interest Compensation Portion 

1000 tons of Shenzhen carbon emission rights quota will be given to investors for interest 

compensation, which is actually a futures contract that will be physically delivered upon expiry. 

The expected price of physical delivery futures at maturity can be the average level of the historical 

data since 2014.The price of the interest compensation portion is about RMB 0.0644 million. 

𝑉𝑝𝑙𝑢𝑠 =
1000∗𝐸𝑆𝑇

(1+𝑟𝑓)
𝑇 ÷ 1000000 ≈ 0.0644                                                                             (18) 
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6. Analysis of Pricing Rationality and Sensitivity 

Firstly, in extreme cases of a 5% probability, there is no guarantee of returns. The estimated 

floating rate of return is calculated as follows, and it can be seen that the expectation of 2.2% in 

Table 1 is roughly reasonable. 

𝐸(𝑅𝑓𝑙𝑜𝑎𝑡) = 5% ∗ 0 + 95% ∗
𝐸(𝑅𝑓𝑙𝑜𝑎𝑡1

) + 𝐸(𝑅𝑓𝑙𝑜𝑎𝑡2
) + 𝐸(𝑅𝑓𝑙𝑜𝑎𝑡3

)

3
= 2.4286% ≈ 2.2% (19) 

Secondly, the total intrinsic value of this product can be obtained by adding up the three parts 

above, which is nearly equal to its launch price, indicating the pricing rationality. Although it seems 

that the product's fixed yield is quiet low (only 1.9%, even lower than the fixed deposit interest rate 

of 3.3%), there are also floating portion and carbon emission quotas for interest compensation, 

making the final value reach its reasonable level. 

𝑉 = 𝑉𝑓𝑖𝑥 + 𝑉𝑓𝑙𝑜𝑎𝑡 + 𝑉𝑝𝑙𝑢𝑠 = 10.1872 ≈ 10                                  (20) 

Finally, the main parameters for sensitivity analysis including 𝑟𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 , 𝑟𝑓  and 𝜎. 𝑟𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 →

𝑉𝑓𝑖𝑥 , 𝑟𝑓 → 𝑉𝑓𝑙𝑜𝑎𝑡  and 𝑉𝑝𝑙𝑢𝑠 , 𝜎 → 𝑉𝑓𝑙𝑜𝑎𝑡 . 𝑟𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 (the one-year fixed deposit interest rate) is 

negatively related to the total value, while 𝑟𝑓  and 𝜎  are positive influencing factors. By simple 

calculation, it is found that all the parameters have limited impacts on the price of the carbon 

finance deposit, indicating its low investment risk. 

7. Thoughts on Optimizing the Design 

7.1. Get More Market Participants Involved 

As is mentioned above, a 1000 tons of carbon emission quota will be granted to participating 

entities upon expiration for interest compensation, so the participating entities are generally 

production enterprises with emission demands. If normal individual investors also want to involve 

in, perhaps the emission quota can be replaced by other equivalent tradable assets. 

For instance, the green financial bond purchased by individuals and non-financial institutional 

customers in the counter market of the inter-bank trading market are almost risk-free. Therefore, a 

certain number of green financial bonds with a total face value equal to the terminal value of carbon 

emission quotas can be ideal substitutes, for it help expand the scope of market participants, which 

is beneficial for activating bond trading. 

7.2. Construct Carbon Emission Allowances Portfolio 

The underlying asset of a carbon finance structured deposit can also be a carbon emission 

allowances (CEA) portfolio, such as a combination of Shanghai CEA, Beijing CEA, Guangdong 

CEA, Hubei CEA, and Shenzhen CEA. Compared with a single CEA, the CEA portfolio performs 

better in risk diversification. The processes involved in the construction are as follows. 

Firstly, determine the weights by using Markowitz investment portfolio theories and the same 

historical data as the original product. For the purpose of risk diversification, a minimum variance 

portfolio is required, and the calculation results turn out to be: 17.84% Shanghai CEA, 42.34% 

Beijing CEA, 0% Guangdong CEA, 22.36% of Hubei CEA and 17.45% Shenzhen CEA. 

Secondly, use Monte Carlo simulation to generate random variables, correlate them according to 

the Jolisky-decomposed correlation coefficient matrix of the CEAs, and simulate the future asset 

price fluctuation paths of five CEAs with these random variables. 

Finally, combine the paths using the pre-determined weights. Figure 5 presents the histogram 
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and simulated paths of the CEA portfolio. Similarly, by adding up the fixed income portion and 

interest compensation, the total estimated value can be obtained, which is about 10.1474 million. 

 

Figure 5: Geometric Brownian Motion-Portfolio Level. 

8. Conclusion 

By examining the pricing rationality of a carbon finance structured deposit and optimize its 

design, main enlightenments can be summarized. Firstly, the key for reasonable asset pricing is 

matching benefits and costs. As is shown in the case, the future cash flow of 1.9% fixed portion + 

floating portion + additional interest compensation may equal to or even exceed that of a 3.3% fixed 

asset. Secondly, parameters used for asset pricing must be estimated with reasonable basis, rather 

than solely on subjective judgement. Finally, developing carbon emission trading markets and 

encouraging financial institutions to design green financial products are significant and effective 

ways for China to achieve the targets of carbon peaking and carbon neutrality. 
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