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Abstract: At first, the paper introduces the research background of dynamic systems and 

discrete dynamic systems, and then expounds the basic theoretical knowledge of Euler 

Method and discrete dynamic systems. Based on these theoretical knowledge, we 

illustrate the application of Euler Method in discrete dynamic systems on autonomous and 

non-autonomous.In the autonomous discrete system, we expound the famous Lorenz 

system, and we introduce the two-dimensional Holling-Tanner systemin the 

non-autonomous discrete system. Finally, by using MATLAB software, we obtain the 

corresponding results and figure with Euler Method. 

1. Introduction 

Dynamical system is a rule that describes the change of system variables over time.Originally, it 

only referred to mechanical systems described by differential equations derived from Newton's 

classical mechanical theory, which was mainly obtained by Lyapunov and Poincare at the end of the 

19th century. Then Nemystskii, Stepanov, Coddington and Levinson elaborated and disposed the 

properties of dynamical systems which were defined by differential equations. Subsequently, the 

concept is widely applied in many different branches of science. The theory of modern dynamical 

systems mainly originates from the work of Kolmogorov,Smale and Anosov.Taking time as the 

classification standard, it can be divided into continuous dynamic system and discrete dynamic 

system;Using dimension as the standard, it can be divided into finite dimensional dynamical system 

and infinite dimensional dynamical system. Considering the state and the dependence between the 

states, it can be divided into linear dynamic system and nonlinear dynamic system. Therefore, the 

ordinary differential equation can be regarded as a continuous dynamic system, and the 

corresponding difference equation can be taken as a discrete dynamic system [1]. 

At the same time, dynamical system is also closely related to numerical analysis because the 

results of qualitative analysis can be used as the research premise of numerical analysis. Of course, 

these data also help to improve the calculation method in numerical analysis, and the results provide 

materials and methods for the qualitative theoretical research of dynamical system. However, being 

based on numerical analysis, Euler Method will certainly become a powerful research tool. 

Curriculum and Teaching Methodology (2023) 
Clausius Scientific Press, Canada

DOI: 10.23977/curtm.2023.061204 
ISSN 2616-2261 Vol. 6 Num. 12

21



2. Basic theoretical knowledge 

2.1 Basic Knowledge of Euler Method 

2.1.1 Method of Euler 

The method of Euler is the simplest numerical solution. The so-called numerical solution is a 

discretization method, which can be used to approximate the value 𝑦1, 𝑦2, ⋯ , 𝑦𝑛of an unknown 

function 𝑦(𝑥) at a series of discrete points 𝑥1, 𝑥2,⋯, 𝑥𝑛.Among them,  𝑥1, 𝑥2,⋯, 𝑥𝑛 is given in 

advance.So,it's called a node;ℎ = 𝑥𝑛+1 − 𝑥𝑛(ℎ > 0, 𝑛 = 0,1,2, ⋯) named as size (variable),which 

it's an equal distance usually.That is to say 𝑥𝑛 = 𝑥0 + 𝑖ℎ ( 𝑖 = 1,2,3, ⋯ ), 𝑦1, 𝑦2, ⋯ , 𝑦𝑛  is a 

numerical solution of the initial value problem [2]. 

Considering the following initial value problem by using the method of Euler  

{
𝑦′ = 𝑓(𝑥, 𝑦)

𝑦(𝑥0) = 𝑦0 
                                 (1) 

We can conclude 𝑦′ = 𝑓(𝑥0, 𝑦0). Supposing h is equal distance step, 𝑥1 = 𝑥0 + ℎ ,we get 

approximately 

𝑦(𝑥1)−𝑦(𝑥0)

ℎ
= 𝑓(𝑥0, 𝑦0)                           (2) 

When h is sufficiently small. So 𝑦1 = 𝑦0 + ℎ 𝑓(𝑥0, 𝑦0).Similarly, 𝑦2 = 𝑦1 + ℎ𝑓(𝑥1, 𝑦1)  when 

𝑦(𝑥1)= 𝑦(𝑥0 + 2ℎ),⋯; 𝑥𝑛+1 = 𝑥0 + (𝑛 + 1)ℎ, we get approximately   

𝑦(𝑥𝑛+1)−𝑦(𝑥𝑛)

ℎ
= 𝑦′(𝑥𝑛) = 𝑓(𝑥𝑛, 𝑦𝑛)                     (3) 

When h is sufficiently small.  

In general, we use 𝑦𝑛 to represent an approximation of  𝑦(𝑥𝑛), then   

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛)                           (4) 

When 𝑥𝑛+1 = 𝑥0 + (𝑛 + 1)ℎ 

This is the explicit Euler Method, or Euler scheme for short. 

Generally, Taylor expansion can be used as a tool to analyze and calculate the accuracy of 

formulas. To simplify the analysis, we assume that 𝑦𝑛 is accurate, that is, the error 𝑦(𝑥𝑛+1) −
𝑦𝑛+1 is estimated on the premise of 𝑦𝑛 = 𝑦(𝑥𝑛).This error is called the local truncation error.We 

have  𝑓(𝑥𝑛, 𝑦𝑛) = 𝑓(𝑥𝑛, 𝑦(𝑥𝑛))=𝑦′(𝑥𝑛)  from (3). Therefore, the local truncation error is as 

follows under the Euler scheme: 

𝑦(𝑥𝑛+1) − 𝑦𝑛+1 =
ℎ2

2
𝑦′′(𝜉) ≈

ℎ2

2
𝑦′′(𝑥𝑛)                   (5) 

2.1.2 The implicit Euler format 

Since difference is an approximate calculation of differentiation, one of the basic ways to 

achieve discretization is to directly substitute the difference quotient for the derivative.The 

derivative 𝑦′(𝑥𝑛+1) is approximately replaced by the backward difference quotient 
𝑦(𝑥𝑛+1)−𝑦(𝑥𝑛)

ℎ
, 

we get 

𝑦𝑛+1 − 𝑦𝑛

ℎ
= 𝑓(𝑥𝑛, 𝑦𝑛+1) 

That is 
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𝑦(𝑥𝑛+1) ≈ 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦(𝑥𝑛+1))                     (6) 

It is the implicit Euler format[3]. 

The same way, according to the local truncation error of Euler scheme, we get  

𝑦(𝑥𝑛+1)−𝑦𝑛+1 ≈ −
ℎ2

2
𝑦′′(𝑥𝑛)                       (7) 

2.2 The discrete dynamical system 

Definition 1   Dynamic system 

A dynamical system is a semigroup G acting on the space M.That is, there is a mapping 

𝑇: 𝐺 × 𝑀 → 𝑀 

(𝑔, 𝑥) → 𝑇𝑔(𝑥) 

that makes 

𝑇𝑔 ·  𝑇ℎ = 𝑇𝑔·ℎ                               (8) 

It is a discrete dynamical system when G=N or G=Z, and it is a continuous dynamical system 

when 𝐺 = 𝑅+or 𝐺 = 𝑅. G is said to be an invertible dynamical system if it is a group[4]. 

For example, assuming 𝑓: 𝐼 → 𝐼(I represents interval), 

𝑇𝑛 = 𝑓𝑛 = 𝑓 ·  𝑓𝑛−1 = 𝑓 ·  ⋯ ·  𝑓(𝑛), 𝐺 = 𝑁.                 (9) 

We can conclude that 𝑇𝑛 is a discrete dynamical system.This dynamical system is reversible 

when 𝑓 is invertible and generalize the definition to 𝑛𝜖𝑍 in the usual way. 

Definition 2 Autonomous and non-autonomous systems 

In mathematics, a dynamical system is autonomous if it can be represented by a system of 

ordinary differential equations whose expressions are irrelevant of the independent variables of the 

dynamical system. On the contrary, if they are related which can say the system is non-autonomous. 

Autonomous systems often do not contain time t explicitly in dynamics, but non-autonomous 

systems often have explicit time t. 

Definition 3 Compression mapping 

Let 𝑋 be the metric space, and 𝑇 be the mapping from 𝑋 to 𝑋, if ∀𝑥, 𝑦 ∈ 𝑋 when ∃𝜇, 0 <
𝜇 < 1,then  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜇𝑑(𝑥, 𝑦)                            (10) 

So we call 𝑇 a compression mapping [5]. 

Theorem 1 the theorem of Compression mapping 

Given that X is a complete metric space and T is a compressed map on X, then T has one and 

only one fixed point. That is, the equation 𝑇𝑥 = 𝑥 has one and only one solution. 

3. Application of Euler Method in discrete dynamic system 

3.1 Discrete Examples of differential Equations (autonomous) 

We consider the ordinary differential equation of Lorenz system [6]: 

{

𝑥′ = 𝑎(𝑦 − 𝑥)      

𝑦′ = 𝑏𝑥 − 𝑦 − 𝑥𝑧

𝑧′ = 𝑐𝑧 + 𝑥𝑦        
                            (11) 
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A chaotic state appears when the system parameter is -1∈ [−1.59,7.75]. The nonlinear terms of 

this equation are only A and B, and there is no obvious time variable, so the system is autonomous. 

Jules Henri Poincaré, a French mathematician, once pointed that there was a discrete system that 

productively accompanied non-autonomous systems. His idea is reflected in (11) of Lorenz model 

that we solve the plane α when (11) of each rail line cuts across α,and then we can define the 

mapping 𝑇: 𝛼 → 𝛼. Then,we argues that 𝑇(𝑋) = 𝑌 is considered to be true when the track of (11) 

that goes through point 𝑋 passes through plane α again and it intersects the plane at point Y.𝑇 

must be smooth if it exists, and a fixed point 𝑍 is on 𝑇,so a track that passes through 𝑍 must 

return to 𝑍 while it forms a closed loop by Theorem 1.As shown in figure 1 that plane 𝛼 is 

replaced by an arc 𝑙, we can obtain the mapping 𝑇: 𝑙 → 𝑙 if  (11) is a planar system. 

 

Figure 1: Planar graph 

Therefore, the problem of periodic solutions that it is derived from a group of differential 

equationsis, transformed into the fixed point problem of discrete dynamic systems. The fixed point 

of a discrete dynamic system can be realized by a computer program. The closed orbit of the system 

of differential equations may exhibit a very complex "macarone" shape when T is "chaotic", and the 

orbit could go though repeatedly the plane α at the points of a cantor set. 

Using Euler Method (4) to discretize it, we can get  

{

𝑥𝑛 = 𝑥𝑛−1 + 𝑡(𝑎(𝑦𝑛−1 − 𝑥𝑛−1))                  

𝑦𝑛 = 𝑦𝑛−1 + 𝑡(𝑏𝑥𝑛−1 − 𝑥𝑛−1𝑧𝑛−1 − 𝑦𝑛−1)

𝑧𝑛 = 𝑧𝑛−1 + 𝑡(𝑥𝑛−1𝑦𝑛−1 + 𝑐𝑧𝑛−1)               

               (12) 

Among them, 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 are constants, and t is the time step.This is a differential equation, its 

mapping form as follows: 

{

𝑥 → 𝑥 + 𝑡𝑎(𝑦 − 𝑥)          

𝑦 → 𝑦 + 𝑡(𝑏𝑥 − 𝑥𝑧 − 𝑦)

𝑧 → 𝑧 + 𝑡(𝑥𝑦 + 𝑐𝑧)        

                         (13) 

The following is implemented for the Lorenz model system track diagram drawing program. 
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Figure 2: Tracks of Lorenz system 

A "singular attractor" can be seen in Figure 2, but it has not been fully analyzed theoretically so 

far. 

3.2 Discretization Examples of differential Equations (non-autonomous) 

Here, we consider the Euler discretization of the two-dimensional Holling -Tanner system.The 

theroy of Holling-Tanner has always been an important topic in population ecology, which has been 

paid close attention by many researchers in the field of biological mathematics and ecology. 

Holling-Tanner system is a complex discrete dynamical system. Over the years, Holling - Tanner 

ecological model updated to improve constantly. Such as reaction functionof Holling-I, Holling-II, 

Holling-III, Holling-IV, and the half - scale dependence of this reaction function on the Holling- 

Tanner system. In the following study, we will consider the Euler discretization of two-dimensional 

non-autonomous Holling-Tanner systems. 

The two-dimensional non-autonomous Holling-Tanner system is of the form [7] as follows: 

{

𝑑𝑁

𝑑𝑡
= 𝑁 [𝑟 (1 −

𝑁

𝐾
) −

𝑘𝑃

𝑁+𝐷
]

𝑑𝑃

𝑑𝑡
= 𝑃 [𝑠 (1 −

ℎ𝑃

𝑁
)]           

                       (14) 

We use the Euler Method (3.1.4) to discretize the concrete process: 

①Substitution of variables 

We assume that 𝑥 =
𝑁

𝐾
, 𝑦 =

ℎ𝑃

𝐾
, 𝑎 =

𝑘  

ℎ 
, 𝑑 =

𝐷

𝐾
 .So, we can simplify the system as 

{
𝑥′(𝑡) = 𝑟𝑥(1 − 𝑥) −

𝑎𝑥𝑦

𝑥+𝑑

𝑦′(𝑡) = 𝑠𝑦 (1 −
𝑦

𝑥
)         

                        (15) 

and take 𝑝(𝑥) =
𝑎𝑥

𝑥+𝑑
 

That way, we can get 
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{
𝑥′(𝑡) = 𝑟𝑥(1 − 𝑥) − 𝑦𝑝(𝑥) 

𝑦′(𝑡) = 𝑦 (𝑠 (1 −
𝑦

𝑥
) )          

                        (16) 

𝑥(0) > 0, 𝑦(0) > 0, 𝑟, 𝑠, 𝑁, 𝐾, h > 0. 

where 𝑥(𝑡) is the prey population and 𝑦(𝑡) is the predator population.So what is a prey 

population and how does it behave? The prey population is a Logistic growth with the increase of 

K(K is called capacity), and it has an intrinsic growth rate 𝑟 in the absence of predators that means 

the prey grows independently.The predator consu- mes the prey at the rate of functional response 

𝑝(𝑥),and it's Logistic growth. In this system, its intrinsic growth rate is 𝑠,𝑁 represents the capacity 

proportional to the bait, ℎ is the amount of prey consumed by a single predator when 𝑦 =
𝑥

ℎ
 . 

② (16) is discretized by Euler Method to obtain: 

{
𝑥𝑛 = 𝑥𝑛−1 + 𝛿(𝑥𝑛−1(1 − 𝑥𝑛−1) −

𝑎𝑥𝑛−1𝑦𝑛−1

𝑥𝑛−1+𝑑
      

𝑦𝑛 = 𝑦𝑛−1 + 𝛿 [𝑏𝑦𝑛−1 (1 −
𝑦𝑛−1

𝑥𝑛−1
)]                       

           (17) 

δ is the step size in (17). 

③The mapping of (17) is  

{
𝑥 → 𝑥 + 𝛿 [𝑥(1 − 𝑥) −

𝑎𝑥𝑦

𝑥+𝑑
]

𝑦 → 𝑦 + 𝛿 [𝑏𝑦(1 −
𝑦

𝑥
)]         

                        (18) 

If we consider its own growth retarding effect, we can get  

{
𝑥1(𝑡) = 𝑟1𝑥1 (1 −

𝑥1

𝐾1
− 𝑁1

𝑥2

𝐾2
)  

𝑥2(𝑡) = 𝑟2𝑥2(−1 + 𝑁2
𝑥1

𝐾1
−

𝑥2

𝐾2
)
                      (19) 

by (18). 

Next, we use Matlab to solve the differential equations:we get the rail line of 𝑥(𝑡) , 𝑦(𝑡), and 

𝑦(𝑥) as fllowing 

 

Figure 3: The rail line of 𝑥(𝑡) , 𝑦(𝑡), and 𝑦(𝑥) 

According to Figure 3, it can be predicted that both prey population 𝑥(𝑡) and predator 𝑦(𝑡) are 

0 5 10 15
0

10

20

30

40

50

x(t)

y(t)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

26



periodic functions with time 𝑡, and we can see that the derailed line 𝑦(𝑥) is a closed curve. 

4. Summary 

This article simply introduces the discrete dynamic system,and describes mainly the Euler 

Method and its application in discrete dynamic systems.In the application of specific practical 

problems, the autonomous Lorenz system, and the two-dimensional non-autonomous 

Holling-Tanner system  are  considered.We use the Euler Method to discretize them and get the 

discrete dynamical system form.At the same time, we use Matlab software to do numerical 

calculation of these dynamic systems and draw the corresponding track graph when the parameters 

are fixed. 

With the further study of the problem, we can do such work: based on the previous work, we can 

study the equilibrium point or stable point, branch point of the Lorenz system and the 

two-dimensional non-autonomous Holling-Tanner predator-prey system.Specifically, we can 

analyze Figure 2 and Figure 3, and then study the bifurcation problem of discrete dynamic 

system.In general, we can also specifically consider the truncation error of each example, so as to 

enrich the application of Euler Method in the example. 
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