
A Study of Isomorphic Trees in Programming

Competitions

Zhiyong Feng, Yike Shi, Junping Shi*

The School of Computer Science and Engineering, Jishou University, Jishou, Hunan, 416000,

China
*Corresponding author

Keywords: ACM programming, tree isomorphism determination algorithm, tree

isomorphism, algorithm optimization

Abstract: Tree isomorphism refers to the question whether two trees are exactly the same

when the structure and node labels are the same. Tree isomorphism algorithm can be used

to judge whether two trees are similar and classify similar trees. Tree isomorphism

algorithms are usually implemented using depth-first search and hash tables, and there are

also methods using graph theory and linear algebra algorithms. Tree isomorphism

algorithm is widely used in many fields, such as bioinformatics, computer science and

mathematics. It can help researchers better understand and analyze tree-structured data and

provide a basis for subsequent research and development. At the same time in college

students programming competition for the problem of tree isomorphism is more widely

studied, usually use Algorithm of Aho, Hopcroft, and Ullman(AHU) to solve the

isomorphism tree, but simple AHU algorithm time complexity is, cannot well solve the

problem in the competition, consider to improve the AHU algorithm. This paper starts from

the definition of homogenous tree, tells the basic concept of homogenous tree, then

introduces the principle and implementation of naive AHU algorithm and analyzes its time

complexity, and then improves the naive AHU algorithm, which greatly improves the

running efficiency of AHU algorithm, and finally introduces the application of improved

AHU in the form of program design competition.

1. Introduction

Be advised that papers in a technically unsuitable form will be returned for retyping. After

returned the manuscript must be appropriately modified. College programming competitions are

very high in gold among college competitions, with the ICPC [1-3] being known as the Olympics of

college programming competitions, and the data structures and algorithms [4-6] that are the focus of

the programming competitions are the focus of research, with graph isomorphism and tree

isomorphism problems being the focus of it. In November 2015, University of Chicago

mathematician and computer scientist László Babai announced that he has proved that the graph

isomorphism problem can be solved in quasi-polynomial time. The isomorphic tree problem is a

classical problem in computer science that involves comparing two trees and determining whether

they are isomorphic. The isomorphic tree problem has a wide range of applications in computer

Advances in Computer, Signals and Systems (2023)
Clausius Scientific Press, Canada

DOI: 10.23977/acss.2023.070312
ISSN 2371-8838 Vol. 7 Num. 3

101

science and graph theory. Different advances have been made both at home and abroad for

isomorphism problems, such as: maximal out-of-plane graph isomorphism [7-8], tree graph

isomorphism [9,10], most of the domestic and international literature proposes the use of intelligent

algorithms to solve isomorphism problems or related problem discussions, literature [11] uses

genetic algorithms to solve isomorphism problems, converting them to problems with minimum

values by mapping the population code to the solution space and performing genetic operations to

find the optimal value of the problem, and also by neural network [12] algorithms. All of the above

literature provides useful solution methods, but there is still much to be desired.

In the ACM-ICPC competition for isomorphic trees generally uses the tree isomorphism problem

existence validity algorithm-Algorithm of Aho, Hopcroft, and Ullman (AHU) to determine whether

two rooted trees are isomorphic. However, the time complexity of the plain AHU algorithm is too

high and the memory overhead is too high, so the plain AHU algorithm is not used in actual

competitions. So we consider to improve the AHU algorithm to reduce the complexity of the

algorithm and to solve the problems in the competition better. In practical applications such as

network protocol design, the improved AHU algorithm can quickly compare the structure of two

packets and use it to determine whether they are identical.

2. The of Study of Isomorphic Trees

2.1. Definition of Isomorphic Tree

Trees can be classified as rooted trees and unrooted trees. A rooted tree has a definite root node,

while an unrooted tree has an indefinite root, and any node can be used as the root of the tree. So

the problem of tree isomorphism is also divided into rooted tree isomorphism and unrooted tree

isomorphism. The definition of tree isomorphism can be simply understood as given two trees T1

and T2, two trees are said to be isomorphic if T1 can become T2 by swapping left and right children

several times. For example, the two trees given in Figure 1 are isomorphic, because when we swap

the left and right children of nodes A, B, and G of one of the trees, we get another tree.

Figure 1: Example of an isomorphic tree.

2.2. Rooted Tree Isomorphism

For two rooted trees 𝑇1(𝑉1, 𝐸1, 𝑟1) and 𝑇2(𝑉2, 𝐸2, 𝑟2), if there is a double shot φ : 𝑉1 → 𝑉2, such that

∀ u, v ∈ V1(u, v) ∈ E1 ↔ (φ(u), φ(v)) ∈ E2 and φ(r1) = r2 holds, then the rooted tree 𝑇1(𝑉1, 𝐸1, 𝑟1) and

𝑇2(𝑉2, 𝐸2, 𝑟2) isomorphism are said to be present.

2.3. Rootless Tree Isomorphism

For two unrooted trees 𝑇1(𝑉1, 𝐸1) and 𝑇2(𝑉2, 𝐸2), a rooted tree 𝑇1(𝑉1, 𝐸1) and 𝑇2(𝑉2, 𝐸2) is said to be

102

isomorphic if there exists a bijection φ : 𝑉1 → 𝑉2 such that ∀ u, v ∈ V1(u, v) ∈ E1 ↔ (φ(u), φ(v)) ∈

E2holds. Simply put, two trees are said to be isomorphic if the tree 𝑇1 and 𝑇2 can be made identical

by renumbering all nodes of the tree 𝑇1.

2.4. The Question Conversion

In fact, the unrooted tree isomorphism is convertible to the rooted tree isomorphism problem.

For two unrooted trees two unrooted trees and, the specific steps are as follows.

Step 1, find all the centers of gravity of the two unrooted trees respectively

Step 2, if the centers of gravity are different, then the two unrooted trees must not be isomorphic.

Step 3, if the number of centers of gravity are both 1, marked as 𝑛1 and 𝑛2 respectively, then if

there is a root tree 𝑇1(𝑉1, 𝐸1, 𝑛1) and 𝑇2(𝑉2, 𝐸2, 𝑛2) isomorphism, then there is no root tree 𝑇1(𝑉1, 𝐸1) and

𝑇2(𝑉2, 𝐸2) isomorphism, and vice versa.

Step 4, If the number of centers of gravity are both 2 and label their centers of gravity as 𝑛1,𝑛1
′

and 𝑛2 ,𝑛2
′ respectively, then if there is a root tree 𝑇1(𝑉1, 𝐸1, 𝑛1) and 𝑇2(𝑉2, 𝐸2, 𝑛2) isomorphism or

𝑇1(𝑉1, 𝐸1, 𝑛1
′) and 𝑇2(𝑉2, 𝐸2, 𝑛2

′) isomorphism, then there is no root tree 𝑇1(𝑉1, 𝐸1) and 𝑇2(𝑉2, 𝐸2)

isomorphism. Conversely, it is not isomorphic.

According to the above determination steps, we can know that once we solve the rooted tree

isomorphism problem, then we can convert the unrooted tree isomorphism problem to the rooted

tree isomorphism problem according to the above steps, and then we can solve the unrooted tree

isomorphism problem. Therefore, the complexity of the algorithm for solving the rooted tree

isomorphism problem is the same as that of the unrooted tree isomorphism problem.

If the centers of gravity are different, then the two unrooted trees must not be isomorphic.

3. The AHU Algorithm

3.1. Definition of AHU

The plain AHU algorithm is based on bracket sequences, where a rooted tree has a unique legal

bracket sequence and a tree's bracket sequence is stitched together by the bracket sequences of its

subtrees. The tree corresponding to the new bracket sequence is isomorphic to the tree

corresponding to the original bracket sequence if that edge subtree bracket sequence is spliced in

that order.

3.2. Principle of AHU

Tree isomorphisms have transferability. That is, if 𝑇1 and 𝑇2 isomorphism, 𝑇2 and 𝑇3isomorphism,

then 𝑇1 and 𝑇3 isomorphism. Then the recursive algorithm for finding the tree bracket order is

introduced, splicing the subtree in backtracking and awarding the sequence with small dictionary

order in splicing first. And the final result is noted as NAME. The algorithm steps are shown in

Figure 2.

103

Figure 2: Basic flowchart of AHU algorithm.

The NAME of the subtree rooted at node r is taken as the NAME of node r, noted as NAME(r),
then for a rooted tree 𝑇1(𝑉1, 𝐸1, 𝑟1) and 𝑇2(𝑉2, 𝐸2, 𝑟2) , if NAME(𝑟1)=NAME(𝑟2), then 𝑇1 and
𝑇2isomorphic. For a rooted tree with n nodes, assuming that the rooted tree is chained, then the
maximum length of the nodes can be n. Then the complexity of the NAME algorithm is a constant
multiple of that of (1 + 2 + ⋯ + 𝑛), the time complexity of the plain AHU algorithm is O(n2).

3.3. Improvements of AHU

The drawback of the plain AHU algorithm is that the length of the tree's NAME may be too long,
so the tree is hierarchically divided, and the shortest distance from the node at the i-th level to the
root is i. The NAME located at the ith level can be obtained by splicing only the NAME of the node
located at the i-th level. So the original NAME of the node can be replaced by its rank within the
layer, and then the original spliced node NAME is replaced by an array of joined elements.

First note that the total length of the NAME obtained by the splicing of the i-th layer is the sum
of the degrees of the ith layer, that is, the total number of points of the layer, which is expressed
below. THE NEXT STEP OF THE ALGORITHM WILL TREAT THESE NAMES AS STRINGS
(ARRAYS) AND SORT THEM, AND THEN TRANSPOSE THEM TO THEIR RANK WITHIN
THE LAYER (I.E., REMAP THEM TO A TREE). While sorting algorithms can use cardinality
sorting, cardinality sorting [12] can complete the sorting in a time frame, where L represents the
size of the character set.

4. Practical Application

4.1. Description of the Title

Take the title SPOJ-TREEISO as an example.

Given two undirected trees T1 and T2 with equal number of vertices N (1 ≤ N ≤ 100,000)

numbered 1 to N, find out if they are isomorphic.Two trees T1 and T2 are isomorphic if there is a
bijection f between the vertex sets of T1 and T2 such that any two vertices u and v of T1 are
adjacent in T1 if and only if f(u) and f(v) are adjacent in T2.

104

Input:
The first line of input contains the number of test cases nTest (1<= nTest <= 400). Each test case

contains:
The first line contains the number of nodes N.
Each of next N-1 lines contain two integers A, B, denoting that there is an edge in T1 between

nodes A and B (1 ≤ A, B ≤ N).
Each of next N-1 lines contain two integers A, B, denoting that there is an edge in T2 between

nodes A and B (1 ≤ A, B ≤ N).
The sum of N over all test cases will not exceed 100,000.
Output:
For each test case print YES if T1 and T2 are isomorphic and NO otherwise.

4.2. Problem Analysis

First of all, the description of the problem shows that this is a tree isomorphism problem, which
requires to determine whether two unrooted trees are isomorphic or not. The AHU algorithm is
considered, but the complexity of the plain AHU algorithm is not enough to pass the problem, but
the complexity of the optimized AHU algorithm above is good enough to pass the problem.

5. Conclusion

Programming competitions are constantly evolving, and more and more algorithms are being
studied, and the requirements for the efficiency of the algorithms are getting higher and higher,
especially the programming competitions nowadays pay special attention to the solution of tree-like
problems, so it is essential and necessary to study the problem of isomorphic trees in ACM
competitions, and it is also necessary for ACM to focus on the efficiency of the algorithms to
reduce their time complexity. In this thesis, the AHU algorithm is improved to reduce the time
complexity to O(n), which is important for the practical application of the algorithm.

References

[1] Yonghui Wu and Jiande Wang. Algorithm Design Practice for Collegiate Programming Contests and Education.
CRC Press, 2018
[2] Ferrada Héctor. A sorting algorithm based on ordered block insertions. Journal of Computational Science, 2022,
64
[3] Rick H. de Boer and Cassio P. de Campos. A retrospective overview of International Collegiate programming
contest data. Data in Brief, 2019, 25: 104382.
[4] Dovier A, Formisano A, Gupta G, et al. Parallel Logic Programming: A Sequel[J]. arXiv e-prints, 2021.
[5] Andre Droschinsky and Nils Kriege and Petra Mutzel. Faster Algorithms for the Maximum Common Subtree
Isomorphism Problem. CoRR, 2016, abs/1602.07210
[6] V. Arvind et al. The isomorphism problem for k -trees is complete for logspace. Information and Computation, 2012,
217: 1-11.
[7] Mitchell S, Beyer T, Jones W. Linear Algorithms for Isomorphism of Maximal Outerplanar Graphs. Journal of the
Acm, 1979, 26(4):603-610.
[8] Cole R, Crochemore M, Galil Z, et al. Optimally fast parallel algorithms for preprocessing and pattern matching in
one and two dimensions[C]// IEEE Foundations of Computer Science. IEEE Computer Society, 1993.
[9] Buss S R. Alogtime Algorithms for Tree Isomorphism, Comparison, and Canonization. 1997.
[10] Wang Y K, Fan K C, Liu C W, et al. [IEEE 1995 IEEE International Conference on Evolutionary Computation -
Perth, WA, Australia (29 Nov.-1 Dec. 1995)] Proceedings of 1995 IEEE International Conference on Evolutionary
Computation - Adaptive optimization for solving a class of subgraph isomorp[J]. 1995, 1:44.
[11] Hopfield J. Neural computation of decisions in optimization problems. Biological Cybernetics, 1985, 52.
[12] Guo Zhengchu and Hu Ting and Shi Lei. Distributed spectral pairwise ranking algorithms. Inverse Problems,
2023, 39(2)

105

