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Abstract: Graph Convolutional Neural Networks (GCNs) often demonstrate poor 

robustness when faced with adversarial attacks, which can be generated with malicious 

intent. Several heuristic defensive methods have been proposed to mitigate this issue, but 

they are often vulnerable to stronger adaptive attacks. Recently, researchers have shown 

that the non-robust aggregation functions used in GCNs are responsible for their 

vulnerability, and adversarial training in the popular space can enhance the model's 

accuracy and robustness. Building on this prior research, this paper analyzes the robustness 

of the winsorised mean function and the mean aggregation function from the perspective of 

model interpretability, based on the theory of breakdown points and influence function 

robustness. We propose an improved robust combinatorial defensive method, WLGCN, 

which replaces the mean aggregation function in the GCN operator with the more robust 

winsorised mean aggregation function, and incorporates a robust adversarial regularizer on 

the manifold space hidden layer H(1) of the GCN. Finally, we evaluate the robustness of the 

proposed model under different levels of adversarial perturbation cost, using accuracy and 

classification margin as evaluation metrics. The experimental results demonstrate that the 

proposed defensive approach can effectively enhance the model's robustness against 

adversarial attacks while maintaining model accuracy, when compared to other baselines. 

1. Introduction 

With the advent of deep learning, convolutional neural networks have made remarkable progress 

in various fields, including computer vision and natural language processing. However, traditional 

convolutional neural networks are only suitable for processing Euclidean space data, such as images 

and text, which have the characteristic of translation invariance [1]. On the other hand, graph data, a 

type of non-Euclidean data, has gained widespread attention due to its prevalence in modeling 

complex relationships in the real world, such as social network relationships, transportation 

relationships, and protein structure relationships. The local structure of each node in the graph may 

be vastly different, making translation invariance no longer applicable. To solve this issue, 

researchers have extended convolutional eural networks to graph data, resulting in graph 

convolutional neural networks. GCNs have shown great promise in extracting features from graph 
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data, which enables us to perform various downstream tasks, including node classification, link 

prediction, and graph classification. 

However, recent research has revealed that deep learning models are susceptible to adversarial 

perturbations, which can severely affect their output. For instance, minor variations in a few pixels 

in an image, although imperceptible to the human eye, can cause significant changes in the model's 

output. Similarly, graph neural network models are vulnerable to adversarial perturbations, such as 

adding or deleting edges, modifying node features, etc. Adversarial attacks on graph convolutional 

neural networks can have severe consequences, particularly in practical applications such as social 

networks, where malicious users can easily create fake followers to add false information, 

manipulate online comments, and product websites, or deceive target users to mislead analysis 

systems [2]. 

Therefore, the security issue of graph convolutional neural networks is currently one of the 

research hotspots. In-depth research on graph adversarial attacks and countermeasures can promote 

their successful application in a wider range of fields. Compared to other areas of deep learning, 

graph adversarial attacks are more challenging because graph attributes are not only affected by 

perturbations, but also discrete structures. Thus, developing robust countermeasures against graph 

adversarial attacks is crucial to ensure the reliability and trustworthiness of GCN models in 

practical applications. 

We organized the remainder of the study as follows. To start with, Section 2 introduces the 

current researches that are related to our work. The preliminary definitions of GCNs, the attack and 

defense unified modeling are given in Section 3. Section 4 analyzed the robustness of the 

aggregation function. Section 5 illustrates the combinatorial defensive method we used that 

including winsorisedconv and the latent adversarial training. In Section 6, we provide detailed 

results and experimental analysis. We draw the conclusions in Sections 7. 

2. Related Works 

In recent years, research on adversarial attacks and defenses in graph convolutional neural 

networks (GCNs) has received increasing attention from researchers. Zügner et al. [3] were among 

the first to propose the Nettack attack algorithm for graph adversarial learning, which modifies 

node data features and their connections to generate small adversarial perturbations guided by a 

scoring function. This sparked a wave of research on adversarial attacks on GCNs, with subsequent 

studies conducted by Dai [4], Wang [5], Zhou [6], Sun [7], and others. 

Concurrently, research on defense methods against adversarial attacks on GCNs has also gained 

momentum. Feng [8] et al. introduced Graph Adversarial Training (GAT) as a robust defense 

method based on dynamic regularization using graph structure. Zhu et al. [9] proposed a sample-

based Batch Virtual Adversarial Training to enhance the model's robustness. According to the study 

by Günnemann et al. [10], GCN defense methods against adversarial attacks can be broadly 

classified into three categories: 

1) Data pre-processing [11, 12]: For instance, graph purification, which purifies the perturbed 

graph to obtain a clean graph and trains the GCN model on it. 

2) Model training [13, 14, 15]: For example, adversarial training, which trains the model by 

labeling adversarial samples with the correct label, giving the model defense capability against 

corresponding attack methods. However, this method is limited by the attack methods and cannot 

defend against unknown attacks. 

3) Model architecture modification [16]: For example, introducing attention mechanisms to learn 

how to differentiate between adversarial perturbations and clean samples, and training a robust 

GCN model by penalizing the weights of adversarial nodes or edges. 
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In summary, a significant body of literature has emerged that focuses on the development of 

adversarial attacks and defenses in GCNs. The proposed defense methods offer a promising avenue 

for mitigating the impact of adversarial attacks, and further research is required to enhance their 

effectiveness and robustness. 

3. Preliminary Definition 

3.1. Definition of the GCNs 

A graph convolutional neural network is a deep learning model designed for processing graph-

structured data. It utilizes a neighbor aggregation strategy and a message passing mechanism to 

learn representations and perform classification tasks on nodes. 

Formally, given an attribute graph ( , )G A X , where [0,1]N NA   is the adjacency matrix and 

[0,1]DX  represents the D-dimensional feature vector of each node. The set of nodes is denoted as 

{1,2,..., }V N and the feature set as {1,2,..., }F D . The labels of a subset of nodes LV V are drawn 

from a set of classes {1,2,..., }kF C . The goal of the GCN is to map the nodes in the graph to their 

corresponding class labels, by iteratively aggregating the features of neighboring nodes to update 

the representation of the target node. 

The definition of the l  layer of graph convolutional neural networks is as follows [17]: 

                                            ( ) ( ) ( ) ( 1) ( )[ {( , ), ( )}]l l l l l

v uv uh AGG A h W u N v                                                     (1) 

The representation vector of the target node is obtained by taking into account the information of 

its neighboring nodes The information is then combined with the representation vector of the target 

node from the previous layer, using an aggregation function ( )lAGG , to obtain the message vector. 

The message vector is then passed to the target node, using a normalized adjacency matrix A, a 

weight function ( )lW , and an activation function ( )l , to compute the representation vector ( )l

vh  of 

the target node. 

The GCN employs a neighbor aggregation strategy and a message passing mechanism to 

iteratively update the representation vector of a target node, by aggregating and transferring the 

information from its neighboring nodes. As shown in Figure 1, to compute the representation vector 

of the target node at layer l, the information of its neighboring nodes is first obtained. Then, the 

information is combined with the target node's own representation vector from layer 1l  , using an 

aggregation function, to obtain the representation vector of the target node at layer l . 

 

Figure 1: Node information aggregation  

3.2. Definition of the Attack Unified Modeling 

Consider an original attributed graph (0) (0) (0)( , )G A X , where (0)A  is the original adjacency matrix 
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and (0)X  is the original node feature matrix. Let ( , )G A X% % %  be the graph obtained by adding 

adversarial perturbations, where structural attacks are applied to the adjacency matrix A and feature 

attacks are applied to the node feature matrix X . Let ∆ be the cost of adversarial perturbations,   

be the model parameters obtained by training on a set of instances, and ( , )f A X  be the graph 

convolutional neural network model. The goal of the attacker is to maximize the loss function of the 

target node tv  on ( , )f A X  in order to achieve the desired attack effect, which can be defined as 

follows [17]: 

0 0. .|| || || ||
max ( ( , ))

As t A A X X
f A X

   % % %

%l
                                                    (2) 

subject to 
0 0|| || || ||A A X X    % % , where 

0|| ||A A%  represents the number of non-zero elements in 

a vector. The constraint controls the size of the perturbations and limits the total number of 

modifications on the node feature matrix and the adjacency matrix to ∆. 

3.3. Definition of the Defense Unified Modeling 

As research on graph neural network attacks has progressed, the study of defensive methods 

against GNN-based smuggling has also made rapid progress, proposing corresponding defensive 

strategies for different attacker models. In this section, we provide a general definition of defensive 

models for graph data adversarial attacks and their related concepts: 

Definition as: [18]  

                                                         
*
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                                              (4) 

Let G be an original network or a perturbed network. The goal of defense is to minimize the loss 

function of the attacked model, making it as close as possible to the loss of the model that has not 

been attacked. 

3.4. Definition of the Winsorised Mean 

Winsorised mean: a method for handling outliers that is different from truncating the mean 

(removing outliers) or treating them equally as the sample mean. It limits the influence of outliers 

within a certain threshold. Specifically, in order statistics data, it replaces the values of the top 

100α% (0 ≤ α ≤ 0.5) with the value of the upper segment median and the values of the bottom 

100α% with the value of the lower segment median. Finally, the adjusted statistical data sample is 

averaged using the following mathematical expression [19]:  

                                                    

1

( ) ( 1) ( )

2

1
[ (1 )( )]

n g

i g n g

i g

x x g x x
n

 

 

 

   
                                              (5) 

4. Aggregation Function Robustness Analysis 

The message passing mechanism is the core of graph convolutional neural networks (GCNs), 

and the commonly used aggregation function in existing GCN models based on message passing is 

the mean aggregation function. The sample mean is widely used but has no resistance to outliers. If 

one or more outlier samples exist in a sample, it may lead to a complete breakdown of the model's 

80



output, so it needs to be carefully considered when applied. When the sample data is more scattered 

or has a large range, the sample median is more robust, but the sample median is only one data 

point and is not fully utilized. An intuitive idea is to use the Winsorised mean, which is robust to 

outliers, for processing. 

4.1. Breakdown point theory analysis 

The theory of breakdown point is used to measure the robustness of a function f  under data 

perturbations. The breakdown point m  can be intuitively understood as the minimum number of 

data points that need to be added to a data sample set, in order to make the output of the function f  

diverge to infinity. 

Definition: The breakdown point ( , )m f N  is defined as the minimum perturbation value that 

causes the function f  to breakdown, where N  is the set of all possible perturbations. The 

breakdown point is calculated as follows [20]: 

                                             :| |

min{ : sup | ( ) | }
| | V

v v
m N N N mv

m
f N N

N m 

 
 % %

%U

                                                (6)                                                         

The concept of the "breakdown point" has been widely used in robust statistics. Chen et al. [19] 

found that the mean function is non-robust based on the crash point theory. The crash point of the 

mean function is 1/ (| | 1)vN  , which means that in the worst case, only a small perturbation is needed 

to make the output of the function go to infinity. In contrast, to make the upper bound of the 

winsorised mean tend to infinity, at least ⌊αn⌋+1 perturbed data points with infinite values need to 

be injected into the function. Compared with the crash point of the mean function, which is 

1/ (| | 1)vN  , the crash point of the winsorised mean is higher, indicating its higher robustness to 

outliers. 

4.2. Influence Function Robust Estimation Analysis 

Robust Estimation. It refers to selecting appropriate methods to minimize the influence of 

outliers and gross errors in data samples, in order to obtain the best estimate. A method is 

considered to be "robust" when the results obtained from it closely match the true values, despite 

the presence of outliers. If the estimated values are significantly different from the true values, it 

indicates poor performance of the method and suggests that the outliers are affecting the model. 

[21]. 

Influence Function. The influence function refers to the measure of the robustness of an 

estimator, and the corresponding robustness metric can be obtained through the influence function. 

This concept was initially proposed by Hampel [22] based on the concept of infinitesimals, and is 

defined as:  

                                            0

[(1 ) ] ( )
( , , ) lim

T F x T F
IF x T F



 



   


                                              (7) 

where F  is the distribution function, T  is the estimator, and x  is the dot product. If it is a finite 

sample, the corresponding empirical influence function can be obtained [19]:  

                                            
( 1) 0

1 1
( , ) ([1 ] ( ) ( ))c nS X T T n f x x x

n n
    

                                          (8) 

where ( 1) ( )nf x is the empirical influence function, and   is a coefficient related to  . 
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Analysis of the Influence Function of the Winsorised Mean. Taking the difference between 

the trimmed mean of 1n  observations and that of n observations yields [19]: 

                           

( ) ( 1)

1 ( ) ( 1)

( 1) ( ) ( 1)

(1 ) ,
1

,
1

(1 ) ,

g n g g

n n g n g

n g n n g n g

g x x gx x x

x x x x x x x
n

g x x gx x x



  
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    


    
 

                                      (9) 

By substituting the sample influence function formula (7) and considering symmetry, the sample 

influence function of the trimmed mean can be obtained as [19]: 
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( ) ( ) ( 1)

( 1) ( 1)
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g g g g
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n g n g
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

 

   

   


  


                                           (10) 

The impact function of the winsorised mean is shown in Figure 2, and it can be seen that the 

impact function is a bounded jump function. The impact function provides a measure of robustness, 

and it indicates that the winsorised mean is more robust than the arithmetic mean, as it can resist the 

influence of outliers. In contrast, the impact function of the mean is unbounded, and the mean is 

very sensitive to outliers, lacking any robustness. 

 

Figure 2: Winsorised mean influence function graph 

5. Combinatorial Defensive Strategy Based on GCN 

5.1. The Robust Aggregation Function 

 

Figure 3: WinsorisedConv Aggregation 

In Section 4, the robustness of the Winsorised mean function compared to the mean function is 

analyzed from two perspectives: the breakdown point and the influence function. By analyzing the 

robustness of the Winsorised mean and mean functions, this paper proposes an improved robust 
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defense operator, WinsorisedConv, by modifying the aggregation function in its graph convolution 

operator based on the mainstream message-passing mechanism of graph convolutional neural 

network framework. The specific implementation is to replace the mean aggregation function with 

the more robust Winsorised mean aggregation function in the design stage of the graph convolution 

operator, as shown in Figure 3. 

5.2. Graph hidden adversarial regularization 

Miyato et al. [23] pointed out that perturbing word embeddings does not affect the mapping to 

any word and proposed this method as a robust classifier for normal text. Meanwhile, Stutz et al. 

[19] showed that adversarial instances can simultaneously improve robustness and accuracy if they 

are on a low-dimensional embedding of popular samples. To address similar problems in Graph 

Convolutional Networks, a direct analogue of perturbing word embeddings in GCNs is perturbing 

the output of the first hidden layer, denoted as (1)H  which combines node features and graph 

information. In this paper, we use a proxy of the latent popular space and inject robust adversarial 

regularization terms to indirectly perturb graph and node information, implicitly enhancing the 

model's robustness against structural attacks. Experimental results in Section 6 show that this helps 

to reduce the success rate of GCN under adversarial attacks (robustness) while maintaining or 

improving the model's accuracy. The model framework is illustrated in the figure 3. 

The forward propagation formula for the GCN model is shown as follows: 

                                                         
( 1) ( ) ( )( ), 0l l lH AH W l  %

                                                            (11) 

where 0H X represents the initial node representation. For the sake of symbol expression 

convenience, let's assume that all nodes are represented by d-dimensional vectors at all layers, 

denoted as ( )l n dW R  . Consider a standard two-layer GCN model that tries to find the optimal 

weight parameters (1) (2): ( , )W W  , in order to minimize the model output loss function f , that 

is min ( , )f G X  .  

The hidden layer combines the structure of the model graph and node information, and can 

directly perform adversarial training on it as follows: [24]  

(1)min max ( )
D

f H
 





                                                              (12) 

where f  is the loss function based on the perturbation amount   at (1)H .The imperceptible 

vibration noise defined as  : { :|| || , {1,..., }}iD i n      . 

The perturbation amount in (11) is jointly chosen over all nodes in the graph setting, which is 

different from the common adversarial setting where each individual adversarial sample seeks its 

own perturbation. The result is a high computational cost, which further exacerbates the nested min-

max optimization. To alleviate this problem, we further adopt adversarial training with a standard 

regularization variant, aimed at improving the smoothness of the model's perturbation predictions, 

as shown in Equation (13).  

                                                 
(1) (1)min ( , ) : ( ) ( )A X f H R H  


 %l

                                               (13) 

Here, γ is a balancing parameter, and the regularizer R  is defined as the Frobenius distance 

between the original model output (the second layer) and the output after perturbation. 

After simplification, (13) becomes as follows: [24]  
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(1) (2) 2

:( ) max || || . . | |F iR H A W s t


   %

                                                       (14) 

To find the perturbation parameter  , the perturbation parameter   is as follows:  

 
( ) ( )t T T T Ttr A W A W W AA      % % %%

                                                      (15) 

Here, the (2) (2)T

W W W . The overall procedure is summarized in Algorithm 1.  

Algorithm 1 Hidden Adversarial Regularization for GCN 

input: A, X 

While not converged for (13) do 

    While not converged for (14) do 

        Apply ADAM to find * (gradient in   from Eq (15)) 

     Take one step of ADAM in   with the gradient computed by 
(1) * (2) 2( ) || ||Ff H A W      %  

5.3. The Robust Combined Defense Method 

Through the analysis of the robustness of the winsorised mean and mean function in Section 4, 

this paper proposes an improved robust defensive method WLGCN based on the mainstream 

message-passing mechanism graph convolutional neural network framework. The specific 

implementation method is to incorporate potential adversarial perturbation training into the hidden 

layers, and to select a more robust trimmed mean aggregation function to replace the mean 

aggregation function when designing the graph convolutional operator. The overall architecture of 

the model is shown in Figure 4. 

 

Figure 4: WLGCN framework 

6. Experiments and Analysis 

In order to evaluate the efficacy of the defensive method of the WLGCN in this paper, the study 

conducted experiments on three real datasets and two graph neural network attack models. The 

effectiveness of this method was compared with the latest to defensive method validate its 

performance. 
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6.1. Datasets and Evaluation Metrics 

This study conducted research on three real datasets, including Cora [25], Cora-ML [26], and 

Citeseer dataset. Table 1 provides a statistical description of the datasets. The maximum connected 

component (LCC) of the datasets was calculated. NLCC and ELCC represent the maximum 

connected component of the node set and the maximum connected component of the edge set, 

respectively.  

1) Cora dataset: The Cora dataset is a citation network dataset that contains a large number of 

academic papers, classified into 7 categories. It consists of 2485 articles and 5096 citation records, 

with each node containing 1433 features. 

2) Cora-ML dataset: The Cora-ML dataset is a citation network dataset that contains a large 

number of academic papers related to machine learning, classified into 7 categories. It consists of 

2810 articles and 7981 citation records, with each node containing 2879 features. 

3) Citeseer dataset: The Citeseer dataset is also a citation network dataset that contains 2110 

academic papers and 3668 citation relationships, classified into 6 categories, with 3703 features. 

The degree distribution of Cora, Cora-ML, and Citeseer datasets are shown in Figure 5. We can 

find the majority of nodes are of low degree. 

Table 1: The statistical description of the datasets 

Datasets Nodes Edges Features Labels 

Cora 2485 5069 1433 7 

Cora-ML 2810 7981 2879 7 

Citeseer 2100 3668 3703 6 

 

Figure 5: The three datasets degree distribution 

In this study, we use Accuracy, Classification Margin (CM) and the variant of the CM to assess 

the performance of the models. 

Classification Margin: To evaluate the effectiveness of the attacks, we use Classification Margin 

as a measure, which represents the maximum distance from the misclassified target node to the 

correct class boundary. The formula is as follows [27]:  

max
t

v vt t

v
y y

CM H H
 

 
                                                          (16) 

Here, tv  is the target node, 
tvy  is the class label of the target node tv . 

tvH  is the model output 

before the target node tv  is attacked, and H   is the model output after the target node tv  is attacked. 

6.2. Attack Algorithms 

In this experiments, two classic adversarial attack algorithms with strong attack performance are 
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used, namely NETTACK target attack algorithm and Metattack non-target attack algorithm. The 

following is a brief introduction to these two algorithms 

1) NETTACK [28] is an algorithm that first selects candidate edges and features based on 

important data characteristics. It then designs two evaluation functions to assess the change in the 

target confidence after modifying the candidate edges and features. Finally, it updates the 

adversarial network iteratively by modifying the highest scoring edge or feature. 

2) Metattack [29] is a global attack algorithm that treats the input network G as a hyperparameter 

and constructs a bi-level optimization problem. It utilizes the meta-gradient based on network edges 

to iteratively update the adversarial network. 

6.3. Baselines 

To verify the effectiveness of the proposed robust defense method WLGCN, this paper compares 

it with GCN and three other benchmark defense methods, namely GWNN, AGNN, DGAT, and 

GCN. The following briefly introduces these four defense methods. 

GWNN: A novel graph convolutional neural network (GCN) that uses graph wavelet transform 

to solve the drawbacks of previous spectral GCN methods that relied on graph Fourier transform 

[30]. Unlike graph Fourier transform, graph wavelet transform can be obtained through fast 

algorithms without matrix decomposition, which reduces computation costs and provides good 

interpretability for GCN. 

AGNN: A variant of GCN that performs semi-supervised classification on graph-structured data, 

where the model uses an efficient layer-wise propagation rule based on spectral graph convolution 

that approximates the first-order proximity [31]. 

DGAT: Adversarial training (AT) is a regularization technique that has been shown to improve 

the robustness of models against perturbations in image classification. Directed graph adversarial 

training (DGAT) incorporates graph structure into the adversarial process and automatically 

identifies the impact of perturbations from neighboring nodes, introducing additional adversarial 

regularization to defend against worst-case perturbations. 

DGAT can resist the impact of adversarial perturbations in worst-case scenarios and reduce the 

impact of perturbations from neighboring nodes [32]. 

GCN: A scalable semi-supervised learning method for graph-structured data that uses an 

efficient layer-wise propagation rule, where the specific spectral-domain graph convolution adopts 

a weighted averaging method to aggregate messages from neighboring nodes [33]. 

GCN-W: A GCN variant model based on Winsorised Convolution, which we designed, is 

employed in the ablation study of the experimental section. 

GCN-L: A variant of the GCN model based on Latent Adversarial Training. The model is 

utilized in the ablation study of the experimental section. 

6.4. Adversarial Attack and Defense Experiments 

In the defense process, two main issues need to be addressed: 1) maintaining the performance of 

graph neural network models on clean samples, and 2) minimizing the impact of adversarial attacks 

on the performance based on the first issue. 

Accuracy of the Model before Attack. Due to the winsorised mean aggregation employed by 

WLGCN, some extreme value information may be discarded during the aggregation process, which 

may result in a decrease in the accuracy of this method. To verify the accuracy of this approach, this 

paper conducted 10 experiments on node classification tasks based on three types of original clean 

graph datasets before adversarial attacks, and took the average value. The results are shown in 
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Table 2. It can be observed that the proposed WLGCN method achieves the best performance on 

both the Cora and Citeseer datasets. The performance on the Cora-ML dataset is only slightly lower 

than that of the best-performing model, LATGCN. These results indicate that although the proposed 

model aggregation function is adjusted to discard some extreme values during winsorised mean 

aggregation, the accuracy of the model has not decreased, and the overall accuracy of the model has 

been improved by introducing potential adversarial perturbation training in the manifold space (1)H  

Table 2: The classification accuracy 

Datasets WLGCN GWNN AGNN DGAT GCN GCN-W GCN-L 

Cora 0.8592 0.8589 0.8568 0.8458 0.8538 0.8590 0.8475 

Cora-ML 0.8526 0.8537 0.8567 0.8555 0.8620 0.8524 0.8628 

Citeseer 0.7495 0.7264 0.7191 0.7132 0.7245 0.7219 0.7469 

 

Figure 6: Training curves of the GCN and WLGCN on the training and validation of three datasets 

Model Convergence before Attack. Next, we investigated the convergence behavior of the 

WLGCN and GCN models during the training process. Specifically, in this section, we observed the 

training and validation performance of the GCN and WLGCN models on the three different datasets 

after each training epoch, as shown in the Figure 6. It can be seen that the performance of both 

GCN and WLGCN becomes stable after 100 epochs on the different datasets, indicating that the 

designed improvements to WLGCN did not affect the convergence speed of the model. 

Robustness of Models after Attack. In adversarial training, to further explore the robustness of 

different models, we utilized NETTACK, a potent and inconspicuous graph adversarial attack 

algorithm, to conduct our experiment. The degree distribution of nodes in all three datasets 

displayed a low-degree distribution with small degree values, as illustrated in Figure 5. 

Consequently, we devised an attack that imposed 0-9 perturbed edges to each target node, with the 

addition of 9 perturbed edges regarded as a substantial degree of perturbation. Our aim was to 
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assess the efficacy of the defense algorithm against attacks of varying degrees of perturbation. 

By recording the results of adversarial training averaged over 10 runs, the overall performance of 

the robustness of different models is obtained, using 
9

q 0 qq cm


  as the robustness indicator, where 

q  is the size of the perturbation, and qcm  is the classification margin under the attack perturbation 

size q . The smaller the value of this measure, the stronger the robustness of the corresponding 

model. 

From Table 3, it can be observed that the proposed method is superior to the baseline methods 

under both direct and indirect attacks, indicating that the proposed improved model has high 

robustness. Compared with indirect attacks, it can be found that the model's robustness indicator 

data under direct attacks is much larger than that under indirect attacks, which indicates that all 

models are more susceptible to the influence of direct attacks. This is consistent with the previous 

research results of Zhu et al [32], showing that the effectiveness of attacks by directly manipulating 

and modifying the target node features is higher than that of manipulating other nodes to affect the 

target node. 

In the ablation study, WLGCN demonstrates superior robustness performance in most cases, 

except for Cora (Direct) and Cora-ML where the model's robustness performance slightly lags 

behind GCN-L and GCN-W. 

Table 3: The model robustness under direct and indirect attacks (Nettack) 

Datasets Attack WLGCN 
GWN

N 
AGNN DGAT GCN GCN-W GCN-L 

Cora 
Direct 31.51 33.37 37.44 37.96 37.64 36.70 27.08 

Indirect 3.27 9.33 13.23 8.51 15.15 7.40 11.17 

Cora-ML 
Direct 18.47 22.67 26.18 21.95 24.53 16.34 20.36 

Indirect 0.92 8.33 4.60 3.07 3.96 0.39 8.24 

Citeseer 
Direct 14.84 15.27 40.65 32.96 40.19 26.49 23.82 

Indirect 5.61 7.78 19.80 16.55 21.07 7.84 12.12 

Analysis of Adversarial Training Perturbations. 1)Targeted Attack: In adversarial training, to 

investigate the robustness of the model under different levels of attack perturbation, this paper 

records the model classification robustness under different datasets and perturbation amounts under 

Nettack direct attack, as shown in Figure 7.  

 

Figure 7: The class margin curves of the models under direct targeted attack 

The CM metric represents the distance between a target node and the correct classification 

boundary. Therefore, when a node is correctly classified, the corresponding model output 

confidence should be higher. On the Citeseer dataset, the proposed WLGCN method outperforms 

other methods significantly. On the Cora dataset, when the perturbation amount is 1, all models 

perform well because the minimum degree of the Cora dataset is 2 (including self-loops), making it 

difficult for a single perturbation to change the model output. When the perturbation amount is 
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greater than 2, the performance of GWNN and other baseline methods drops rapidly, while 

WLGCN can still maintain high performance. With the increase in perturbation intensity, the CM of 

different models increases, which can be attributed to the fact that most nodes in the Cora dataset 

have few neighboring nodes. After a direct attack on the target node, the information aggregated by 

the aggregation function is more heavily perturbed, leading to lower model robustness. In summary, 

the proposed method has better performance in model robustness in adversarial attacks.  

2) Global Attack: In adversarial attack methods targeting graph neural networks, there is a class 

of attackers who focus on modifying a small number of edges to significantly degrade the 

performance of the graph neural network model, rather than attacking specific nodes. Metattack is 

an example of such a powerful attack algorithm. In the global attack defense experiments, we 

adopted Metattack to attack the graph neural network and conducted high-intensity attacks by 

modifying the proportion of perturbed edges in the network. The experiments were used to evaluate 

the performance of various defense methods based on the node classification accuracy of the model. 

The results of the experiments are shown in Figures 8. It is easy to observe that WLGCN and 

WGCN exhibit better overall robustness compared to other defense methods. It can be seen that 

Winsorised Conv, after design improvements, plays a major role in defending against global attacks. 

 

Figure 8: The accuracy curves of the models under global attack 

6.5. Parameter Sensitivity Analysis 

To better understand how different hyperparameters can effectively improve a model's resistance 

to adversarial attacks, this chapter conducts an ablation study on the WLGCN model's main 

parameters, which include the following three items: a) message aggregation weight parameter α (0 

< α < 0.5); b) potential adversarial regularization weight parameter γ; c) potential adversarial 

perturbation parameter ε. 

In this section, the sensitivity of the WLGCN model's hyperparameters α, γ, and ε is explored. In 

the experiment, one hyperparameter was fixed, and another hyperparameter was given a value while 

the other hyperparameters were fixed at their optimal values. The effect of different thresholds on 

the performance of WLGCN was studied by changing the other hyperparameters. 

 

Figure 9: Parameter sensitivity analysis 
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Specifically, the value range of α was adjusted from 0.1 to 0.5, γ from 0 to 0.9, and ε from 0 to 

0.6. This experiment takes the three datasets with a clean graph and uses the accuracy as the 

evaluation metric. The performance changes of the model are shown in the figure 9. 

7. Conclusion 

Despite achieving impressive performance, graph convolutional neural networks suffer from 

robustness issues. In this paper, we address the robustness issue of graph convolutional neural 

networks by investigating the non-robustness of aggregation functions. Inspired by the theory of 

breakdown point and influence function, we propose to use the more robust winsorised mean 

aggregation function and incorporate potential adversarial regularization into the (1)H  layer of the 

message passing-based GCN. The robust combinatorial defensive method, named WLGCN, 

achieves improved robustness against graph attacks without sacrificing classification accuracy. We 

evaluate the performance of our proposed model under different perturbation costs using Nettack 

targeted attack and Metattack global attack methods. Extensive experiments on real datasets are 

conducted to evaluate the model's performance using accuracy and classification margin as 

evaluation metrics. We also perform parameter sensitivity analysis on the model. The experimental 

results demonstrate that our proposed method achieves high robustness while maintaining model 

accuracy. 
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