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Abstract: For image reconstruction, the residual network ignores part of the residual 

information when extracting features. We propose an image super-resolution reconstruction 

based on residual compensation joint attention network (RCCN). Firstly, we construct a 

three-way residual network for compensating the feature information of the standard residual 

network; secondly, we design a joint attention module to complement the pixel-level image 

attention information by 3D attention while the channel attention learns the channel weight 

information; finally, our method has clearer results compared with other advanced methods, 

and the objective evaluation indexes are all greatly improved. 

1. Introduction 

Single image super-resolution is a classical image recovery problem[1] that aims to recover high 

resolution images from degraded low-resolution images. Current single-image super-resolution 

reconstruction techniques can be divided into three categories: interpolation-based methods[2], 

reconstruction-based methods[3] and learning-based methods[4]. In recent years, deep learning 

methods have developed rapidly and have shown great potential in the field of computer vision. Dong 

et al [5]first applied deep learning to the image super-resolution problem and proposed super-

resolution reconstruction by convolutional neural networks, which achieved end-to-end mapping 

between LR and HR, but the SRCNN introduced additional computation using pre-up-sampling and 

the 3-layer convolution also resulted in limited extracted information. To address this problem, Dong 

et al [6]propose a super-resolution reconstruction based on fast convolutional neural networks, which 

use deconvolutional layers instead of dual cubic interpolation in the upsampling process and increase 

the depth of the network from three to eight layers. Later, many super-resolution reconstruction 

algorithms based on deep neural networks were proposed. Lim et al [7]proposed super-resolution 

reconstruction based on enhanced depth residual networks, and EDSR removed the BN layer while 

using the residual network, accelerating the convergence of the network. 

Although all of the above deep learning-based SR methods have obtained good reconstruction 

results, there are still some problems. All of these methods ignore the fact that a lot of feature 

information is lost by single-path forward propagation, and although the use of residual networks can 
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alleviate this problem, there is also the problem of insufficient reconstruction details. Aiming at this 

problem, we propose an image super-resolution reconstruction with joint attention for residual 

compensation. The contributions of this paper are summarized as follows: 

(1) To enhance the extraction of long-range features from residual networks, we introduce a 

parallel multi-path extraction module. This module can greatly enhance the detail extraction 

capability of the network and strengthen the generalization capability of the network model. 

(2) A combined attention module has been designed by using a channel attention module and a 

pixel attention module. This module allows the recoding of feature information in the channel and 

pixel dimensions to enable adaptive selection of valid information by the network and suppression of 

interfering information. 

(3) Experimental validation by using a standard test dataset. The experiments show that our 

method has good reconstruction performance and generalization capability. 

2. Related work 

2.1. Residual networks 

In order to make deep neural network training easier, He et al. [8] proposed ResNet, which uses 

jumpers to connect adjacent feature layers to ensure that the feature information in the forward 

propagation process is not less, solves the problem of gradient disappearing in the network training 

process, and greatly deepens the deep learning network, the operation process can be expressed as: 

1 ( ,{ })i i i ix F x W x                                  (1) 

where 
ix  represents the input features divided into two paths, ( )F  represents the residual 

mapping convolution operation and 
1ix 
 represents the output features. 

2.2. Attention mechanisms 

The attention mechanism is an efficient feature selection mechanism. By generating the attention 

weighting function that focuses on the significant region of the feature and ignores the redundant 

feature, the accuracy of feature extraction can be improved by adding only a few parameters. Hu et 

al [9] proposed channel attention networks to improve the effective use of computational resources 

by adjusting the channel attention of network features so that the network focuses on useful features. 

Zhang et al [10] proposed that RCAN introduce channel attention and incorporate residual extraction 

so that the network guides the production of corresponding attention weights based on the image 

information of each channel. Zhao et al [11] extracted pixel attention (PA), produced three 

dimensional attention features to filter and introduce fewer additional parameters, and improved the 

reconstruction performance. 

3. The method RCCN proposed in this paper 

In this section, we introduce each module of the proposed method. Then, the whole framework of 

the proposed method is introduced. 

3.1. Residual compensation combined attention network 

In order to increase the ability of the residual network to extract feature information, this paper 

proposes an image super-resolution reconstruction algorithm with residual compensation combined 

with attention network. The overall framework of the network is shown in Figure 1. Our proposed 
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RCCN consists of three modules, containing a shallow feature extraction module, a nonlinear 

mapping module for residual compensation combined with attention and a reconstruction module. 

The ILR and ISR represent the input and output of the network, respectively, and the initial features 

of the LR image are first extracted using standard convolution to extract shallow feature information, 

as described below: 

 0 0 LRF H I                                  (2) 

where  0H   is the convolution operation for the initial extracted features and 0F  is the initial 

extracted features. 

Secondly, 0F  the feature information is extracted step by step through a composition of n  

RCCN end-to-end connections. In this module, features are extracted using a combination of residual 

compensation and combined attention, with residual compensation capturing some of the features lost 

by the residual network and improving high frequency reconstruction performance. The extraction 

process is shown in the following equation: 

 
1 2 3
, , ,

nLD B CR CR CR CRF C F F F F                            (3) 

where ( 1,2,3, )
iCRF i n   represents the i th CRUB module for feature extraction. BC   indicates 

the operation of the n  modules above using end connection fusion. This results in a feature image 

LDF  for deep feature extraction. 

 

Figure 1: RCCN network structure diagram 

Finally, the resulting deep image features are used as input for upsampling, by which the feature 

images are scaled to the desired magnification, i.e: 

( )UP UP LDF H F                                 (4) 

where UPH  represents the upsampling operation and UPF  represents the feature image at the 

desired magnification, after which UPF  is passed to the reconstruction module to obtain the 

corresponding SR image: 

( )SR RE UPI H F                                 (5) 

where ( )REH   is the reconstructed mapping function and SRI  is the reconstructed high resolution 

image. 

3.2. Residual compensation module 

As shown in Figure 2. Our residual compensation network, using group convolution and depth-

separable convolution as the basic units, introduces a residual structure in the forward propagation of 
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features to prevent the effects of gradient explosion and gradient disappearance. We then introduce 

channel shuffle, which reduces the effect of group convolution and depth-separable convolution on 

the network. 

For the features of the input network, residual compensation is first performed in the low channel 

dimension in order to reduce the computational effort during the compensation process. Split the 

dimension into 1q -dimensional and 2q -dimensional features by using the channel dimension split 

function for features with input in dimension q , where dimension 1q  is equal to dimension 2q  and 

the sum of dimension 1q  and dimension 2q  is q . The purpose of this is to promote the fusion of 

information after the feature mapping dimension and increase the richness of the extracted 

information. The specific operation details are as follows: 

1 2
( ) ( )i q P q PF S F S F                               (6) 

Where  
1qS   and  

2qS   denote the channel splitting operation. Then, for the input features split 

into two, one way is used for long path information extraction, and the other way is retained after one 

convolution. The long path information extraction process starts with a group convolution with a 

convolution kernel of 1 and an activation function for feature mapping to extract shallow information. 

After performing a two-layer group convolution operation, and incorporating a depth-separable 

convolution, deeper detailed information can be extracted. When the image feature information iF  

is passed into a layer of group convolution, the feature information KLF  is obtained. 

1 ( )KS S iF G F                                 (7) 

1 ( )KL L iF G F                                 (8) 

where KSF  is the short path retention feature and KLF  is the feature information extracted from 

the first layer of long path information extraction, 

2( ( ))KE C L KLF DW G F                             (9) 

where  2

LG   denotes the second layer group convolution with activation function operation, and 

 CDW   denotes the depth-separable convolution operation. And KEF  denotes the resulting long path 

information. 

( ( ( , )))D E CON KS KEF G C A F F                         (10) 

where CONA  is the recovery function for the channel dimension, C  represents the Channel 

Shuffle, and ( )EG   represents the 1 1  dimension-holding convolution. 

Although low latitude residual compensation maintains the convolution operation at low latitudes, 

the reduced dimensionality results in incomplete feature information being extracted by the network. 

To obtain fuller feature information, we introduce a two-way constant dimensional residual 

compensation branch, shown in the right-hand two-way diagram. In the first branch of the constant 

dimensional residual compensation, we use the same convolution settings as in the long path 

information extraction part of the low latitude residual compensation, with the difference that the 

constant dimensional residual compensation does not compress the dimensions, i.e. no dimensional 

splitting of the input features is performed. In the second branch of the constant dimensional residual 

compensation, we use only one group convolution operation and one depth-separable convolution 

operation. To increase the exchange of information, both paths are followed by a channel-mixing 

operation, and then the feature information from the different branches is stacked together through 
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the Add layer to fuse all the feature information. 

 

Figure 2: Structure of the residual compensation module 

3.3. Combined Attention Module 

In traditional convolutional neural networks, the features obtained from all convolutional layers 

are aggregated directly to get the output, which cannot effectively use the useful information in feature 

extraction and focus on information helpful for image detail recovery, thus limiting the learning 

efficiency of convolutional networks for feature information. For this purpose the combined attention 

module is designed in this paper and the structure is shown in Figure 3. 

 

Figure 3: Structure of the combined attention module 

In the figure, the input features go through the global average pooling, full connectivity, activation 

function, full connectivity and Sigmoid function in turn, and this is done to obtain information on the 

weights of the input features. Since a single attention can only get the weight share of one dimension 

of image features, for this reason, we introduce pixel-level attention and propose a combined attention 

module for channel-level and pixel-level feature attention on the input image. As shown in the second 

module in Figure 3, pixel-by-pixel multiplication gets pixel attention feature information. 

4. Experimental results and analysis 

4.1. Experimental setup 

To evaluate the effectiveness and accuracy of the proposed algorithm, we experimented with LR 

images and HR images, using DIV2K [12] as the training dataset, and enhanced the data with 90°, 

180°, 270° rotations and random horizontal flips on the training dataset. Four commonly used 

standard datasets Set 5 [13], Set 14 [14], B100 [15] and Urban100 [16] were used as test datasets. All 

experiments in this paper are based on the RGB triple channel, and tests are performed by converting 

the image colour space from RGB to YCbCr, in its Y channel. 
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4.2. Experimental results and analysis 

In order to objectively evaluate the algorithm proposed in this paper, We selected Bicubic, 

SRCNN[5], FSRCNN[6], VDSR[17], DRCN[18], CARN[19], MSRN[20] and other algorithms for 

comparison. The results are shown in Table 1. At 2x, 3x and 4x magnification, the PSNR values and 

SSIM values of the above algorithms are compared on the test data sets Set5, Set14, BSD100 and 

Urban100, respectively. 

Table 1: Quantitative evaluation of 9 SR methods tested on four benchmark sets at different 

magnifications 

Method Scale 
Set5 Set14 BSD100 Urban100 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

Bicubic 

2 

33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 

SRCNN 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 

FSRCNN 37.00/0.9559 32.75/0.9098 31.51/0.8939 29.87/0.9065 

VDSR 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.77/0.9140 

DRCN 37.63/0.9588 33.08/0.9118 31.08/0.8942 30.41/0.9133 

MSRN 38.08/0.9605 33.74/0.9170 32.23/0.9013 32.22/0.9326 

CARN 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 

RCCN 38.13/0.9610 33.67/0.9185 32.22/0.9001 32.41/0.9302 

Bicubic 

3 

30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 

SRCNN 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 

FSRCNN 33.02/0.9135 29.49/0.8271 28.50/0.7937 26.41/0.8161 

VDSR 33.66/0.9213 29.78/0.8314 28.82/0.7976 27.14/0.8279 

DRCN 33.82/0.9226 29.79/0.8311 28.82/0.7963 27.07/0.8276 

MSRN 34.38/0.9262 30.34/0.8395 29.08/0.8041 28.08/0.8554 

CARN 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 

RCCN 34.48/0.9278 30.37/0.8417 29.12/0.8054 28.34/0.8549 

Bicubic 

4 

28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 

SRCNN 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 

FSRCNN 30.66/0.8646 27.71/0.7562 26.98/0.7124 24.60/0.7221 

VDSR 31.35/0.8838 28.02/0.7674 27.29/0.7251 25.18/0.7524 

DRCN 31.35/0.8854 28.19/0.7670 27.23/0.7233 25.14/0.7510 

MSRN 32.07/0.8903 28.60/0.7751 27.52/0.7273 26.04/0.7896 

CARN 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 

RCCN 32.24/0.8966 28.69/0.7833 27.63/0.7376 26.31/0.7912 

As can be seen from Table 1, compared with the above comparison algorithms, the proposed 

algorithm has significantly improved PSNR and SSIM at 2x, 3x and 4x magnification, and is more 

obvious at 3x and 4X magnification. Compared with the CARN algorithm in Set5, Set14, BSD100 

and Urban100 test sets, the average PSNR value of the proposed algorithm is improved to 0.19dB, 

0.08dB, 0.06dB and 0.28dB, respectively, when compared with the second-best one. The 

enhancement of SSIM value is 0.0023, 0.0010, 0.0020 and 0.0056 respectively. It indicates that 

RCCN can show better performance in each data set. 

As shown in Figure 4, in the upper outer column of Urban image024. The reconstruction effect of 

RCCN algorithm proposed in this paper is clearer, and compared with other algorithms, there is no 

artifact phenomenon, and it is closer to HR image. In Urban image076, the transverse decoration of 

the window light has some distortion and deformation of other algorithms, while the reconstruction 
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effect of RCCN algorithm has no deformation, which is a good restoration of the exterior light 

decoration, and the recovery effect of details is more accurate than other algorithms. 
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Figure 4: Visual quality of the Urban100 test set 4x magnification of RCCN compared to advanced 

methods 

5. Conclusion 

In order to solve the problem of insufficient extraction of residual information and insufficient use 

of feature information in residual network, a new super-resolution reconstruction algorithm based on 

residual compensation combined attention network is proposed in this paper. We designed a three-

channel residual feature extraction module to extract more feature information. The main channel 

adopted the low-latitude residual extraction method to extract information while reducing the number 

of parameters. The two auxiliary channels adopted different convolution connections to extract 

features of different levels. At the same time, in order to make the features extracted from the residual 

compensation pass effectively and improve the extraction efficiency, the combined attention method 

is used to further select the extracted residual information, increasing the efficiency of the network, 

allowing better passage of low frequency information and enriching the edge information of the 

network. 
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