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Abstract: Active magnetic bearing control system has some characteristics of complexity, 

nonlinear and strong coupling, it is difficult to get better control effect by general PID 

controller. As a result, a new type of PIαDβ controller with neural network is proposed. A 

mathematical model of active magnetic bearing is constructed. Construction of a fractional 

order controller with BP neural network is given. On the basis of working state of control 

system, five parameters of controller are adjusted to make active magnetic bearing system 

more accurate by self-learning and parallel processing capability of BP neural network. 

Experiment results indicate that when system parameters change, the system of PIαDβ 

controller with neural network reaches steady state after 0.1s, when the external disturbance 

is suddenly added to system, the response time of PIαDβ controller with neural network is 

0.035s.The rapidity, stability, accuracy and anti-interference ability of PIαDβcontroller 

with neural network is obviously superior to other two kinds of control system. 

1. Introduction 

Working condition of an active magnetic bearing is complicated, some uncertain factors exist, it 

is difficult to control stability of the active magnetic bearing as in [1-3]. Performance of a controller 

affects directly whether the magnetic bearing can operate stably. Generally, there are two kinds of 

control methods, one is linear control of conventional PID and state feedback, the other is nonlinear 

control such as neural network and fuzzy control. For a control system with complex nonlinear and 

strong coupling, the traditional PID controller can’t achieve better result. Therefore, the PIαDβ 

controller with Neural Network is put forward, where. When, PIαDβ controller becomes the 

traditional PID controller. There are more two adjustable parameters of PIαDβ controller than 

traditional PID, so the parameter adjustment range becomes larger, which can more flexibly and 

precisely control the controlled object. BP neural network is a kind of algorithm with strong 

nonlinearity, adaptive, self-organizing and self-learning ability. The optimization method based on 

gradient descent is adopted, which makes the total error minimize by adjusting the weight 

coefficient as in [4-6]. 
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In order to promote rapidity, robustness and accuracy of active magnetic bearing system and the 

parameter accuracy of PIαDβ controller, a new kind of method is put forward that combines BP 

neural network model and PIαDβ controller, it makes full use of the advantages of PIαDβ controller 

and BP neural network, the dynamic characteristics of the active magnetic bearing is improved by 

adjusting parameter online as in [7-8]. 

2. Structure and Mathematical Model of an Active Magnetic Bearing Control System 

An active magnetic bearing control system mainly includes radial magnetic bearings, axial 

magnetic bearings, displacement sensors, touchdown bearings, a controller, power amplifiers, a 

rotor and a stator, which is shown in Figure 1. 

 

Figure 1: Structure of an active magnetic bearing 

A control chart of the active magnetic bearing with single freedom is given as Figure 2. 

 

Figure 2: Control chart of active magnetic bearing with single freedom 

Where, Ur is reference voltage value of input signal, Ux is voltage value of feedback signal, Ue 

is deviation value between input signal and output signal, Uc is output value of controller, I0 is the 

reference value of bias current, F1 is an electromagnetic force from above electromagnet, F2 is an 

electromagnetic force from under electromagnet, x0 is a distance between rotor and upper 

electromagnet when the rotor is in the balance position, x is the distance of the rotor from the 

balance center.  

The mass of rotor is for M. When the rotor is in the balance position, it is in the middle of the 

upper and lower electromagnets. If only all force acting on rotor in the up and down directions is 

considered, when the rotor of active magnetic bearing with one degree of freedom is the balanced 

position between the upper and the lower magnet, the following assumptions are made. 

(1) Reluctance of iron core and rotor is ignored, that is, the magnetic potential is only considered 

in air gap. 

(2) Leakage flux of the winding is neglected and the magnetic force is uniformly distributed in 

the magnetic circuit. 

(3) Eddy current effects and hysteresis of magnetic materials are not considered. 

14



Assume that an interference signal appears at a certain moment and makes the rotor off-balance 

position, and the distance from the balance position is x, as shown in Figure 2. By adding a control 

current i, which makes the electromagnetic force from above electromagnet increase, meanwhile, 

the electromagnetic force from under electromagnet decreases, forming an upward resultant force, it 

makes the rotor return to the original balance position. The electromagnetic resultant force from two 

electromagnets is shown below. 
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In above formula, μ0 is for vacuum permeability, whose unit is H/m, N is for the number of 

windings of solenoid, S is for a section area of single pole, whose unit is mm2. The resultant force 

on rotor is calculated as follows. 
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Where, F is for the electromagnetic force on the rotor, mass of the rotor is expressed by m, the 

offset of rotor is expressed by x. The equation can be obtained as follows. 
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According to formula 3, the mathematical expression of the control system is a non-linear 

function related to the offset displacement and the control current. It is very laborious to solve it 

directly. In actual calculation, the non-linear mathematical expression is generally linearized and 

converted into a linear system for solution. Therefore, according to the Taylor formula, the 

electromagnetic force is linearized near the equilibrium position, and the converted equation is 

below.  
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In the formula 4, 
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Ki is a current coefficient, kx is a displacement coefficient. 

According to (2) and (4), the following formula can be deduced. 
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Laplace transform for formula (6), according to transfer function is given. 
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It is known from (7) that one characteristic root locates in right half plane of s plane, which 

makes the system unstable, so it is necessary to add a controller to make the system stable. 

3. Control Algorithm 

The PIαDβ controller with BP network directly controls rotor, five parameters of the controller is 
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adjusted and output by BP neural network as in [9-11]. The optimization of the five parameters such 

as Kp, Ki, Kd, α, β are important in PIαDβ controller, so control objective is to find the optimal 

combination and realize better control effect as in [12-15]. Construction of PIαDβ controller with 

BP Neural Network is represented in Figure. 3, Input and output signal of controller is for e and u 

respectively. 

 

Figure 3: Construction of PIαDβ controller with BP neural network 

Construction of above Neural Network is for 4-5-5, the node of input layer is e, e−1, ce, ce−1, e 

is for an error at current moment, e−1 is for an error at previous moment, ce is for an error change 

rate at current ce−1 is for an error change rate at previous moment, five adjustable parameters of 

PIαDβ controller are all nodes of output layer, namely Kp, Ki, Kd, α, β, the hidden layer consists of 

five nodes. 

The input signal and output signal of j-th node in input layer is as follows.  
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Input signal and output signal from i-th node in hidden layer is as below. 
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The plus and minus symmetrical sigmoid function is used as an incentive function in hidden 

layer neurons, its expression is as follows. 
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Input signal and output signal from l-th in output layer neuron is calculated as below. 
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Where, wij is a weight coefficient between input and hidden layer, wli is a weight coefficient 
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between hidden and output layer. 

Considering Kp, Ki, Kd isn’t usually negative, and 0≤α, β≤1, so the excitation function of output 

layer neuron is realized by non-negative sigmoid function, its expression is as below. 
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Error evaluation index is calculated as formula (17). 
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Where, yd is for an ideal output signal. On the basis of the gradient descent method, a expression 

for weighting factor of every output layer is as follows. 
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Where, η is for learning rate, λ is for inertial factor. ∂y (k)/∂u(k) is determined by 

sgn[∂y(k)/∂u(k)],  above partial derivative is substituted into (18), the correction formula for the 

weight coefficient from output layer to hidden layer is as formula (23). 
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When the error is back propagated from hidden layer to input layer, a correction formula of 

weight coefficient is calculated as follows. 
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By (9) ~ (13), the following formula is deduced. 
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(27) ~ (29) is substituted into (26), the following formula is gained. 
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(30) Is substituted into (25), the correction formula of weight coefficient in hidden layer is 

calculated therefore. 
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The inertia coefficient λ is for 0.9, learning rate η is for (0.01, 1]. 

The principle diagram of PIαDβ controller with BP neural network is displayed as Figure. 4. 

 

Figure 4: Principle diagram of PIαDβ controller with BP Neural Network 

Summary of algorithm is below. 

(1) Initialization. Ensure the amount of each layer neuron node, initialize the weight coefficient 
2 ( )ijw k

and 
3( )liw k

, the initial learning rate η, inertial coefficient λ and k=1. 

(2) Calculate the error. 

(3) According to (7) ~ (15), calculate input signal and output signal of every network layer. 

(4) Calculate the output signal u (k) of controller. 

(5) On the basis of formula (22) and (31), learning by neural network and self-adjusting weight 
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coefficient 
2 ( )ijw k

 and 
3( )liw k

, finally realizing adaptive adjustment of Kp, Ki, Kd, α, β. 

(6) k = k+1, return to step (2), stop the loop when it’s iterations reaches the maximum. 

Input signal of BP neural network is error and error change rate, the output signal is five 

parameters of PIαDβ controller. 

4. Results and Discussion 

The active magnetic bearing control system is simulated by MATLAB, when the relative error is 

greater than 0.05, the parameters are firstly adjusted by BP neural network, then the adjusted 

parameters are sent to controller, learning rate is for 0.28, inertial coefficient is for 0.9, input signal 

is unit step signal. When the rotor is at 0.25mm, an interference pulse signal is added at 500ms, its 

amplitude is 0.07 mm. The displacement response curve of electric spindle is given in Figure. 5, 

corresponding dynamic performance of the control system after disturbance is given as Figure. 6. 

 

Figure 5: Displacement response curve of electric spindle 

According to Figure. 5, when system parameters change, control system of PIαDβ controller 

with neural network reaches steady state when it is 0.1s. The rapidity, stability and accuracy of 

system is obviously superior to other two kinds of control system. 

 

Figure 6: Comparison of anti-interference performance 

According to Figure. 6, when the external disturbance is suddenly added to system, the response 
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time of PIαDβ controller with neural network is 0.035s, it is superior to other two kinds of methods, 

its anti-interference ability is best. The detailed performance indicator from three controllers are 

displayed in Table 1. 

 

Table 1: Performance indicator of system from three controllers 

Type of controller 

Performance index 

Rise time (s) 
Steady state 

time (s) 

Over 

shoot 

Steady state 

error (mm) 

Anti-interference 

time (m) 

conventional PID controller 0.15 0.25 0.25% 0.015 0.05 

fractional order PIαDβ controller 0.08 0.15 0.1% 0.01 0.04 

fractional order PIαDβ controller 

with BP neural network 
0.06 0.1 0.05% 0.005 0.035 

5. Conclusions 

Because of the characteristic of nonlinear, uncertainty, open loop instability and disturbance 

signal in an active magnetic bearing control system, a PIαDβ controller with BP neural network is 

designed. The designed controller is applied to the active magnetic bearing system and simulated by 

MATLAB, compared to a conventional PID controller, PIαDβ controller and PIαDβ controller with 

BP neural network, the designed controller can adjust parameters online, which makes the 

parameters of controller optimization and improves the stability and accuracy of the active magnetic 

bearing system, it can also suppress all interference signal more timely. From several simulation 

curve of control system with different controllers, PIαDβ controller with BP neural network can 

significantly promote steady and dynamic performance of an active magnetic bearing control 

system. 
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