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Abstract: End-to-end speech synthesis is now the most popular technique for Tibetan 

speech synthesis. This paper explores the field of Tibetan Lhasa speech synthesis using 

the Tacotron2 and VITS frameworks, which are based on the end-to-end methodology. 

To address the problem of inaccurate and incomplete coverage in the phoneme 

dictionary, a method of synthesizing Tibetan characters is used for Tibetan speech 

synthesis. Different sequence methods are used for synthesis in the Tacotron2 model, 

and experimental data indicate that using Tibetan characters in the Tibetan Lhasa 

speech synthesis has good performance in this model. Last but not least, the Tibetan 

character synthesis method employs the VITS framework, yielding results that are 

perfect for speech synthesis. Since Tibetan letters have great application value in 

Tibetan speech synthesis, the use of them as text input in the fully end-to-end VITS 

synthesis framework merits further study and promotion. 

1. Introduction 

Speech synthesis is a key technique for human-machine voice interaction, and its main goal is to 

produce continuous speech that is extremely eloquent and natural-sounding. End-to-end speech 

synthesis technology is now able to anticipate speech spectra straight from text, which is then 

translated into audio using a neural vocoder, thanks to the quick development of deep learning [1]. 

The neural network acoustic model plus vocoder structure has currently gained popularity in speech 

synthesis technology and has advanced to the point where it can produce synthesized speech in 

English and Chinese research that is very similar to that of a human. Tibetan is a crucial part of the 

Chinese language system since it has distinct ethnic characteristics, and Tibetan speech synthesis 

has a big impact on the smart development of different Tibetan regions. Early studies on the Tibetan 

language mostly concentrated on statistical parameter speech synthesis, acoustic and prosodic 

analysis, and Tibetan text regularization. Tibetan speech synthesis began relatively late, but it 

developed from concatenative synthesis throughout time [2] additionally to statistical parametric 

speech synthesis [3] to the era of Tibetan speech synthesis using neural networks. These days, deep 

learning and neural network advancements have not only lowered the bar for Tibetan speech 

synthesis [4] but also enhanced its quality, making Tibetan speech synthesis a crucial duty in the 

processing of Tibetan language data. 

Using the text-to-phoneme conversion approach, there are still issues with inaccurate and 
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missing words in the speech synthesis of the Tibetan language's Lhasa dialect. This study examines 

the end-to-end Tibetan Lhasa dialect speech synthesis technology from the two aspects of text input 

unit selection and speech synthesis acoustic model selection in an effort to improve the naturalness, 

intelligibility, and clarity of the speech synthesis of the Lhasa dialect of Tibetan. This research 

compares the effects of phonemes and Tibetan characters on the performance of Tibetan Lhasa 

speech synthesis and analyzes the structural characteristics of Tibetan text in terms of choosing the 

input units for text. Two distinct generative models are contrasted while deciding on the acoustic 

model, including the Tacotron2 two-stage speech synthesis model [5] based on the fully end-to-end 

model VITS and the end-to-end acoustic model [6]. According to the experiment, utilizing Tibetan 

characters as input text improves synthesis performance in the Tacotron2 framework reasonably 

well, and using Tibetan characters in the VITS framework also produces an excellent Tibetan Lhasa 

voice synthesis effect. 

2. End-to-end Neural Network Structure 

2.1. Sequence to Sequence Model 

In 2017, Google Brain unveiled the end-to-end voice synthesis framework Tacotron2. The model 

consists of two components: the first is a recurrent seq2seq-based feature prediction network with 

an attention mechanism for anticipating frame sequences of the mel spectrograms from input 

character sequences. The second component, a neural vocoder, produces time-domain waveform 

samples based on the anticipated frame sequences of the mel spectrograms. The time-domain 

waveform, which is smoother and easier to train using mean squared error loss (MSE), since each of 

its frames is phase-invariant, can be used to calculate the mel spectrograms, which are used to link 

the two components of the system. Figure 1 depicts Tacotron2's overall system architecture. 

An encoder and a decoder that introduces an attention mechanism make up the front-end 

acoustic model. The input sequence is transformed by the encoder into an implicit representation 

sequence, which is given to the decoder in order to anticipate the voice spectrogram. Three 

convolution layers are used to convolve a 512-dimensional character vector created from the input 

characters, each layer containing 512 5 × 1 convolution kernels, i.e., each kernel spanning 5 

characters, followed by batch normalization [7] and the activation of ReLU. The input character 

sequence's broad context is modeled by the convolutional layers. A Bi-LSTM layer receives the 

output of the final convolutional layer and produces encoded features with 512 units. 

When the encoder outputs are combined using the attention network, the attention network 

summaries each encoded sequence into a fixed-length context vector [8]. The model can stay 

consistent as it moves forward along the input sequence, minimizing potential decoding processing 

errors like subsequence duplication or omission. This is accomplished by using a position-sensitive 

attention mechanism, which expands the additive attention mechanism to enable the use of 

cumulative attention weights from earlier decoding processes as additional features. Following the 

computation of the attention weights and the transfer of the input sequence and location features to 

a 128-dimensional hidden layer representation, the location features are obtained by convolving 32 

1-dimensional convolutional kernels of length 31. 

The decoder, which predicts the output spectrogram from the encoded input sequence one frame 

at a time, is an autoregressive recurrent neural network. First, a two-layer fully linked Pre-Net with 

256 hidden ReLU cells per layer receives the spectrum frames predicted in the preceding phase. A 

two-layer stacked one-way LSTM with 1024 cells receives the output of the Pre-Net stitched with 

the attention context vector. The attention context vector is once more used to stitch the output of 

the LSTM together before undergoing the desired spectral frame is predicted using a linear 

transformation. Each layer of the Post-Net consists of 512 5 × 1 convolution kernels and a batch 
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normalization process, every batch normalization procedure is followed by a tanh activation 

function before the neural coder WaveGlow, with the exception of the final layer of convolution. 

The neural coder WaveGlow creates the audio [9]. 

 

Figure 1: Tacotron 2 system framework diagram 

2.2. Full End-to-End Model 

The core component of the VITS speech synthesis model, which is fully end-to-end, is 

variational inference, together with normalized flow and adversarial training. VITS travels through 

the hidden variables, models randomly on the hidden variables, and employs a stochastic duration 

predictor to increase the expressiveness of the synthesized speech, in contrast to Tacotron2, which 

uses a spectrally connected acoustic model and vocoder. A posterior encoder, a projection encoder, 

a decoder, a discriminator, and a stochastic duration predictor make up the model's overall structure. 

The inference synthesis stage does not use the posterior encoder and discriminator; they are only 

used for training. Figure 2 depicts a block schematic of the complete VITS system, with the solid 

line representing the training phase process and the dotted line representing the inference process. 

For the posterior encoder, the non-causal WaveNet residual module [10] used in WaveGlow and 

Glow-TTS [11] is used. An extended convolutional layer with gated activation units and skipped 

connections makes up the residual module. The posterior distribution is a typical Gaussian 

distribution, and a linear layer is used to construct the mean and variance of the normal posterior 

distribution. 

The prior encoder contains two parts, consisting of a text encoder and a normalized flow𝑓𝜃. The 

text encoder processes the input sequence, processing the text input sequence such as phoneme or 

Tibetan characters sequence as 𝑐𝑡𝑒𝑥𝑡, which uses the encoder module of the transformer [12], which 

uses relative position representation instead of absolute position encoding [13], by which the hidden 

representation ℎ𝑡𝑒𝑥𝑡 can be obtained from 𝑐𝑡𝑒𝑥𝑡, and finally passes through the linear layer to 

generate the mean and variance. The standardized flow is a collection of affine coupling layers used 

to increase the prior distribution's flexibility and transform it into a more complicated distribution 

[14]. 

The HiFi-GAN V1 generator is used to produce the decoder. A multi-receiver field fusion 

module follows each transposed convolution in the decoder. The aggregate of the outputs from the 

remaining blocks with various receiver field widths constitutes the multi-receiver field fusion 
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module's output. The decoder is used to create audio and functions similarly to the vocoder. 

The discriminator makes use of the HiFi-GAN multi-period discriminator architecture [15]. A 

hybrid Markovian window-based sub-discriminator called the multi-period discriminator [16], each 

of them processes the incoming waveform's period pattern differently. 

Using the input text, the stochastic duration predictor creates a distribution of text durations. The 

stochastic duration predictor is effectively reparameterized by superimposing the residual blocks 

with dilated and depth-separable convolutional layers. The coupling layer, which consists of a 

reversible nonlinear transformation of monotone rational quadratic splines, is then subjected to the 

neural spline flow. Neural spline flows [17] compared to often employed affine coupling layers, 

increase transformation expressiveness with a similar amount of parameters. 

 

Figure 2: VITS system framework diagram 

3. Experiments and Results 

This experiment uses the Tacotron2 framework and VITS framework to implement the speech 

synthesis of the Tibetan Lhasa language. The detailed experimental procedure is as follows. 

3.1. Experimental Data and Processing 

The experimental corpus was adopted from the internal speech synthesis corpus of the speech 

engineering experiment of Northwest Minzu University, including 9387 sentences of professional 

Tibetan Lhasa male voice, with a sampling rate of 22050 Hz, sampling accuracy of 16 bits, single 

channel, and a total duration of 9.19 hours. The Tibetan corpus of the Lhasa dialect was selected to 

cover various linguistic features as much as possible, evenly covering various phonological 

phenomena, and at the same time designed according to the linguistic knowledge of Tibetan, 

including all the consonants and vowels in Tibetan, which can reduce the problem of poor 

generalization of the model due to the lack of training data or sparse data, and the text covers a wide 

range of aspects, including ethnic customs, daily life, music and art, etc. content. Finally, Voice 

Activity Detection (VAD) processing is performed on the silences of the speech in the corpus. 

Silences play a crucial role in the neural network speech synthesis system, and too many silences 
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will slow down the learning of the model using the attention mechanism, and removing the silences 

at the beginning and end of the speech can speed up the convergence of the model. 

On the self-built pronunciation dictionary, the phonetic symbols corresponding to the syllables of 

Tibetan Lhasa were converted into a list of phonemes, thus converting the set of Tibetan phonemes 

into English alphabetic representations, for example, the Tibetan word " རྦད་དེ་ཁོ་ར་ཨ་མའི་འགྲམ་ཤོར་འགྲོ་གི་རེད། ", 

was transformed into " kh o r a i kh a ng s ew ds u m a ds u t i ". 

For the speech synthesis of Tibetan Lhasa using Tibetan characters as input text, the approach 

taken was to first count all the alphabetic Unicode codes of Tibetan characters appearing in the 

corpus, from 0F40-0FB7, and to count a total of 58 letters after removing the special symbols from 

them. All single characters and Tibetan stacked combination symbols, such as the base character, 

head letter, subjoined letter, and vowel, are referred to as Tibetan characters. For Tibetan, the 

syllable point "་" means to divide the syllable, so it is used to divide the word, and the clause line "།" 

means to convert the comma and the stop to ",". 

3.2. Experimental Environment and Parameter Settings 

The environment required for this experiment is as follows. The implementation is done on a 

centos 7 system using python, with a Tesla T4 as the graphics card. 

Tacotron2's short-time Fourier transform (STFT) with a frame size of 50 ms, frame hop of 12.5 

ms, and Hann window function is used to produce the mel spectrograms. Using an 80-channel mel 

filterbank with a frequency range of 125 Hz to 7.6 kHz, the STFT magnitude is converted to the mel 

scale before being subjected to log dynamic range compression. The output magnitudes of the 

filterbank are trimmed to a minimum value of 0.01 before log compression in order to reduce 

dynamic range in the logarithmic domain. The batch size is configured to 64. We employ the Adam 

optimizer with 𝛽1=0.9, 𝛽2=0.999，𝜖=10−6, and a learning rate of 10−3 that exponentially decays 

to 10−5 starting after 50,000 iterations. 

Model networks in the VITS framework are trained using the AdamW optimizer with 𝛽1=0.8，

𝛽2=0.99, and weight decay 𝜆=0.01. The learning rate decay is scheduled by a 0.999
1

8⁄  factor in 

every epoch with an initial learning rate of 2 × 10−4. The batch size is set to 64 and a window 

generator is utilized for training to cut down on training time and memory utilization. 

3.3. Experimental Results 

To more accurately reflect the subjective perception of speech synthesis quality, the mean 

opinion score (MOS) evaluation is applied. In this experiment, we got 20 native speakers from the 

Lhasa region of Tibet to help us score and then trained these people to score the 20 speech items for 

each model. The following MOS scoring results using Tibetan Lhasa phonemes as input in the 

Tacotron2 framework, Tibetan characters as input in the Tacotron2 framework, and Tibetan 

characters in the VITS framework are shown in Table 1: 

Table 1: Mean Opinion Score (MOS) scoring results 

System MOS 

Tacotron2+WaveGlow (phoneme) 3.93 

Tacotron2+WaveGlow (Tibetan characters) 4.08 

VITS (Tibetan characters) 4.20 

Ground truth 4.48 

The synthesis impact of the aforementioned models was compared using the same Tibetan 

sentence of the above models is used: "ཉལ་ཁང་ཨ་འདྲས་བཤད་ཀ་རྩ་ཅི་བེད་ཀི་རེ་པ།མཚམས་ཅིག་སྐབས་དུས། "The mel spectrogram 
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is shown below: 

 

Figure 3: Different models use different sequences to generate the mel spectrograms of the same 

Tibetan sentence 

According to Figure 3, which contrasts the left and right graphs, the model for Tibetan Lhasa 

speech synthesis using the Tibetan characters will perform better because the resonance peaks are 

sharper and more distinct after using the Tibetan characters sequence as input than the model using 

the phoneme sequence, and the high-frequency region is described in more detail. Finally, observe 

the middle and right graphs, the right graph is also cleaner and clearer in the low frequencies, the 

high-frequency region in the middle frequencies does not have the continuous horizontal lines in the 

middle left graph, and the synthesized voice is the less mechanical sound of the Tacotron2 model 

and closer to the original voice. 

4. Conclusion and Future Work 

The VITS and Tacotron2 models are established models in the field of voice synthesis 

technology at this time. When using the Tibetan character sequence approach, both objective and 

subjective testing have shown that these models exhibit good performance in Tibetan Lhasa speech 

synthesis. This study conducts a number of trials using cutting-edge technology and the distinctive 

Tibetan language. The results can serve as guidelines and pointers for future studies in Tibetan 

speech synthesis, furthering the field's advancement and ethnic harmony. 

In future research, it is hoped that the models can be further optimized through adjustments to 

improve training and that existing models can be used for transfer learning of the small data set of 

the Tibetan Amdo dialect to achieve comparable synthesis results. 
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