
DETR 3D Object Detection Method Based on Fusion of 

Depth and Salient Information 

Yonggui Wang1,*, Jian Li1, Zaicheng Zhang1, Bin He2 

1School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and 

Technology, Xi'an, Shaanxi, 710016, China 
2School of Electronics and Information Engineering, Tongji University, Shanghai, 200000, China 

1403439107@qq.com 
*Corresponding author 

Keywords: Monocular 3D Object Detection, Depth Module, Global Relationship of 

Features, Transformer, Saliency Network 

Abstract: Most of the existing monocular 3D object detection algorithms combine 

geometric relationships and convolutional neural networks to predict the 3D attributes of 

the object, lacking depth feature information and global relationship of features. To solve 

these problems, a DETR monocular 3D object detection algorithm combining depth and 

salient information is proposed. A lightweight unsupervised depth module is constructed to 

extract object depth feature information, and Transformer model is introduced to obtain the 

global relationship of features. In addition, aiming at the high computational cost of 

Transformer model in the algorithm, a remarkable network is designed to reduce the 

computational load of Transformer encoder. The experimental results in KITTI official 

dataset show that the proposed algorithm achieves the optimal detection accuracy in 

multiple indicators compared with other current advanced detection algorithms, and the 

effectiveness of each module in the algorithm is proved through ablation experiments.

1. Introduction 

As one of the key tasks of computer vision, 3D object detection aims at identifying and locating 

corresponding objects in images. It has been widely used in automatic driving and indoor object 

detection. At present, the algorithm with the optimal detection accuracy mainly relies on LiDAR 

laser point cloud data to provide accurate target depth information. However, the detection 

algorithm based on LiDAR has some problems, such as high cost of equipment, high requirement of 

environment in the process of data acquisition and high cost of calculation. Compared with laser 

LiDAR equipment, monocular camera has the characteristics of low equipment cost, easy 

portability and simple data acquisition, so many scholars at home and abroad have paid attention to 

it, and many excellent monocular 3D target detection algorithms have been proposed. 

Most of the existing monocular 3D detection algorithms use convolutional neural networks to 

restore the 3D bounding frame of the target, which is mainly divided into three steps: (1) predict the 

location of the 2D center point of the target; (2) Using geometric algorithm or projection algorithm 

to locate the 3D center of the target and predict the target depth information; (3) Aggregate target 
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visual feature information, so as to restore the 3D surrounding box of the target. However, the 

convolutional neural network mainly extracts the local relation between features, and lacks the 

global relation of features. Moreover, the depth information predicted by geometric algorithm or 

projection algorithm has serious position deviation from the real label, which leads to the decline of 

detection accuracy. 

In order to solve the above problems, a DETR3D object detection algorithm integrating depth 

and salient information is proposed in this paper. The algorithm includes backbone network, depth 

module, salient network and DETR model integrating depth and salient information. Transformer[1] 

encoder and decoder make up the DETR model. 

The contributions of this paper are summarized as follows: 

(1) A monocular 3D target detection algorithm of DETR fusion depth and salient information is 

proposed. The algorithm fuses the depth feature and token salient information on the basis of the 

visual feature information to improve the detection accuracy and efficiency of the algorithm. 

Experimental results of KITTI dataset prove that compared with other monocular 3D target 

detection algorithms, the algorithm in this paper achieves the optimum in multiple detection 

indexes. 

(2) Aiming at the lack of depth information in the monocular 3D object detection algorithm, an 

unsupervised depth information module is proposed to extract the depth feature information in the 

image. 

(3) In view of the lack of global relationship of feature map in monocular 3D target detection 

algorithm, combining CNN and Transformer model to enrich local and global relationship of 

features, and in view of the high calculation cost of Transformer model in the algorithm, A 

significant network is proposed to reduce the computing cost of Transformer encoder. 

2. Related Work 

This section introduces related work in two aspects: one is the monocular 3D object detection 

algorithm based on convolutional neural network, and the other is the object detection algorithm 

based on Transformer. 

Convolutional neural network-based method: The 3D detection algorithm based on 

convolutional neural network mainly relies on geometric algorithm or projection algorithm to 

predict the 3D information of the target. For example, Li et al. [2] proposed GS3D, which uses the 

ratio of the height of the 2D bounding box of the target to the true height to predict the depth 

information of the object, so as to restore the 3D bounding box of the target. Brazil et al. [3] put 

forward M3D-RPN, established a Region Proposal for 2D detection and 3D detection, and also used 

2D bounding box information to restore the target 3D bounding box. Liu et al. [4] proposed 

AutoShape, established the two-dimensional and three-dimensional geometric constraints between 

each target, and fitted the 3D key points of the target by fitting the three-dimensional object model 

of deformation and the automatic model of object mask. Park et al. [5] proposed DD3D, which uses 

pseudo-lidar for pre-training, so as to provide target depth information labels for monocular 3D 

target detection. Li et al. [6] proposed DCD, which uses a dense projection constraint algorithm 

from multiple directional edges to restore the target 3D enclosing box through multiple projection 

constraints and output more candidate depths. 

Method based on Transformer: In recent years, many researchers have introduced Transformer 

model in the field of object detection to solve the problem of lack of global relationship in feature 

graph. For example, Carion et al. [1] proposed DETR and built the first end-to-end 2D target 

detection algorithm based on Transformer model. Zhu et al. [7] proposed Deformable DETR, on 

which multi-scale feature information was introduced to improve the convergence of the model. 
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Wang et al. [8] proposed DETR3D and used Transformer model to extract multi-view feature 

information to restore 3D enclosing box of the target. Zhang et al. [9] proposed MonoDETR and 

designed a deep regression decoder to predict 3D position information of the target. Huang et al. [10] 

proposed MonoDTR and used Transformer model to extract depth and visual feature information in 

depth image and RGB image respectively to predict 3D target position information, and introduced 

depth position coding to improve 3D detection accuracy. Although the detection algorithm of 

convolutional neural network above has made continuous progress in detection accuracy, it still 

lacks depth feature information and global relationship of feature. While the detection method 

introduced in Transformer model solves the problem of lack of global relationship in feature graph, 

it also greatly increases the calculation cost of algorithm. Therefore, this paper proposes a DETR3D 

target detection algorithm that integrates depth and significance information. The algorithm not 

only contains depth feature information and global relationship of feature, but also reduces 

calculation cost of Transformer encoder in the algorithm by using token significance information. 

 

Figure 1: Overall architecture of algorithm 

3. Algorithm 

The overall framework of the algorithm in this paper is shown in Figure 1, which mainly 

includes five components: backbone network, depth module, salient network, DETR module 

integrating depth and salient information, and detection header. The backbone network is 

ResNet-50[11], which is used to learn the visual feature information of the target. The input is 

image I, and the output is three feature maps of the subsampling scale of 1/8, 1/16 and 1/32. The 

depth module is used to learn the target depth feature information (Section 3.1). It uses the attention 

mechanism to reduce the redundant information in the feature map. The whole training process does 

not require additional depth information. The significance network is used to predict the 

significance of tokens (Section 3.2), and the tokens k% before significance are screened out as 

inputs to the DETR module to reduce computation in Transformer encoders. The DETR module 

includes a Transformer encoder and decoder (Section 3.3) where the encoder encodes the visual and 

depth information separately and the decoder aggregates the visual and depth characteristics. The 

detection header consists of a multitask loss function (Section 3.4, p.4), which is used to restore the 

target 3D enclosing box. 
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3.1 Depth Module 

Inspired by S2R-DepthNet[12], this paper designed an unsupervised dual-threaded lightweight 

depth module composed of attention mechanism and convolutional neural network, as shown in 

Figure 2. 

(1) The feature diagram of the last three layers of the module is ResNet-50𝑓1 ∈ ℝ
𝐻

8
×

𝐻

8
×𝐶 , 𝑓2 ∈

ℝ
𝐻

16
×

𝐻

16
×𝐶

 and 𝑓3 ∈ ℝ
𝐻

32
×

𝐻

32
×𝐶 The multi-scale semantic information is generated by combining the 

down-sampling algorithm with element addition𝑓4 ∈ ℝ
𝐻

16
×

𝐻

16
×𝐶 

(2) Secondly, 4f The depth feature map of the imageisgenerated after two convolution𝑓d ∈

ℝ
𝐻

16
×

𝐻

16
×𝐶 ,simultaneously 4f Generate the attention feature map through location attention  𝑓a ∈

ℝ
𝐻

16
×

𝐻

16
×𝐶,then df with af Element addition is combined to generate 𝑓

ad
∈ ℝ

𝐻

16
×

𝐻

16
×𝐶

. 

(3) Follow LID[9] to generate pseudo-depth labels by convolution block pairs𝑓adThe depth 

position is coded, and the depth prediction of each pixel is supervised using focus loss and 

pseudo-depth tags.Be denoted as𝑓dmap. 

DAMBackbone Decoder

preTT

3f 3f  S
Reshape

 

Figure 3: Significant network 

3.2 Salient Network 

In the field of computer vision, the monocular 3D target detection task requires higher 

dimensional feature information than other target detection tasks, so the network model usually has 

a higher computational amount. The introduction of Transformer model into the 3D target detection 

network model solves the problem of lack of global relationship between feature graphs, but further 

increases the calculation cost of the algorithm, thus affecting the portability and embeddability of 

the algorithm. In order to reduce the computational load of Transformer encoder in 3D target 

detection algorithm, a significant network prediction token significance is proposed in this paper, 

and the token with high significance is reserved to reduce the computational load of Transformer 

model in monocular 3D target detection. As shown in Figure 3, this module generates significance 

pseudo-tags mainly through the backbone network, lightweight decoder and binarization DAM[13], 

and uses the pseudo-tags and linear layer to supervise and train to predict the significance of tokens, 

specifically as follows: 
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(1) The input image passes through the backbone network to get the I feature map of the last 

layer 3f (Section 3.1), 3f After the convolution layer of location mapping and reduced dimension 

generated 𝑓3
′ ∈ ℝℎ×𝑤×𝑑(𝑑 = 256) ,By combining features 3f


the h with w and  S ∈ ℝℎ×𝑤×𝑑 . 

Cross-attention mapping of decoders can be used to measure significance [13].Therefore S A binary 

DAM is generated by a decoder which is composed of a self-attention layer and a deformable 

attention layer as the pseudo tag of the significance token. 

(2) Enter the token T 
 ∈ ℝℎ×𝑤×𝑑after four layers of full connection, the length of the first three 

layers is 256, 128 and 64, respectively. The last layer uses the cross entropy loss function to predict 

the token significance, as calculated by formula (1): 

Lsig = BCE(Tpe
i , Si)                           (1) 

Among them
i

preT
To predict the i  significance of the fourth token,

iS Is the dummy tag 

corresponding to the i  fourth token. 

 

Figure 4: DETR module 

3.3 DETR Module 

The DETR module consists of a Transformer encoder, which encodes the visual and depth 

salient tokens separately, and a decoder, which aggregates the visual and depth feature information. 

The input of Transformer encoder is a significant token, which is generated as follows:(1) Visual 

feature map 3f And depth feature map adf Serialization (Section 3.2, p. 42) generates the 

corresponding token;(2) Before selecting through the salient network %K Token of significance, 

Generate visually significant tokens VT Significant token with depth DT . 

Encoder: Transformer encoder receives visually significant tokens VT Significant token with depth

DT ,The aggregation depth position code is used as an encoder input.As shown in FIG. 4(left), each 

encoder block is successively composed of a Self-Attention layer composed of deformable attention 

and a feedforward neural layer (FFN).Separate pairTo encode, VT and DT ,Generate visual coding 

tokens VE and Deep coded token DE ,The whole encoder contains 6 encoder blocks. 

Decoder: The decoder follows the standard architecture of the deep decoder [9], as shown in Figure 

4(right)The decoder receives the output visual coding token from the encoder VE With depth coded 
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tokens DE ,The initial object query is the object query that can be learned
N Cq  , The value of N is 

50. Each decoding block is successively composed of multiple attention layer, feedforward nerve 

layer, deformable attention layer and feedforward nerve layer. The decoder contains 6 decoding 

blocks. First of all DE By aggregating depth features through multiple attention layers and then 

conducting feature interactions between queries through self-attention layers,Finally introduce VE

Visual features are aggregated through deformable layers of attention. 

3.4 Detection head 

The detection head conducts supervision training through the multi-task loss function, as shown 

in Formula 2: 

L = L
class 

+ L
size 

+ L
orien 

+ L
depth 

+ L
sig 

+ L
dmap                    (2) 

Among them, classL , sizeL , orienL , depthL
, sigL

(Section 3.2) and dmapL
(Section 3.1) respectively represents 

the classification loss, three-dimensional dimension loss, orientation loss, depth information loss, 

token significance loss and depth map loss of the target. 

(1) Classification loss: It consists of focus lossandisdefinedasFormula3: 

L
class 

= {
−a(1 − y′)′log y′ y = 1

−(1 − a)y′γlog (1 − y′) y = 0
                         (3) 

Among them, yAfter the predictive output of the sigmoid activation function (values between 0 

and 1), a =0.25,  =2. 

Three-dimensional dimensional loss: it is composed of IoU optimization loss [14], which is 

defined as Formula 4: 

L
size 

= ∥
∥(s−s∗)

s ∥
∥

1
                                  (4) 

Among them, ||·||1It's the L1 norm, 
* * * *

3[ , , ] Ds h w l The true length, width and height of the target, 

3[ , , ] Ds h w l Represents the length, width and height of the predicted target. 

(3) Orientation Loss: composed of Multi-Bin loss, it is defined as formula 5: 

Lo = −
1

nθ∗
∑cos (θ∗ − ci − Δθi)                        (5) 

Among them,
n
 

Is the number of 3D enclosing boxes in the image,
* Is the real Angle value of 

the target, ic As the goal i the3DCenter Angle of enclosing frame, i Is the change in the center 

Angle. 

(4) Depth prediction: It is composed of depth loss [9], which is defined as formula 6: 

L
depth 

= Depth (dgt − dpred)                             (6) 

Among them, gtd
Is the target's ground depth tag, predd

Predict the depth value for the target. 
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4. Experiment 

4.1 Data Set 

This paper conducted experiments on KITTI monocular 3D target detection data set [15], which 

contained 7,481 images, including 3,712 training images and 3,769 verification images, all of which 

had a high resolution of 384*1280 and were divided into three categories, namely, automobile, 

pedestrian and bicycle. Reported in section 4.3 simple, moderate difficulty, three levels of test 

results, and in three dimensional space boundary box and bird 's-eye view of the average precision 

(AP | R40) evaluation of performance, were recorded as AP3D | R40 [15] and APBEV | R40 [15], is 

located in 40 recalled. 

4.2 Experimental Setting 

The mono 3D object detection algorithm proposed in this paper is implemented based on Pytorch 

framework. ResNet-50 is used as the backbone network and Tesla V100 GPU with 16GB video 

memory is used for training and testing in Ubuntu16 environment. In the training process, the input 

image Size was 384*1280, the Batch Size was set to 8, the Adam optimizer was used for 

optimization, the initial learning rate was set to 2x10-4, the training was 200 rounds, and the 

learning rate was reduced by 0.1 times at the 125th and 165 epoch. In Transformer module,6 layers 

of coding blocks and decoding blocks are set, the number of queries is 50, and the depth range is set 

as [0m,60m] according to MonoDLE[14]. 

 

Figure 5: Visualization results 

4.3 Experimental Results and Analysis 

The experiment in this section compares and analyzes the detection accuracy of the current 

mainstream monocular 3D target detection algorithm and the model proposed in this paper on 

KITTI verification set. In addition to the monocular 3D target detection algorithm based on 

convolutional neural network, the comparison experiment also includes the 3D target detection 

algorithm based on Transformer model. In order to guarantee the reliability of the contrast 

experiment results and fairness, adopted in the experimental contrast KITTI official evaluation 

index, respectively 40 recall the location of the 3 d detection average precision (AP3D | R40) with 

aerial view perspective 3 d detection average precision (APBEV | R40), including the IoU for 

occurring simultaneously, The accuracy of three detection levels of easy, medium and difficult is 

given respectively under each evaluation index. All the detection accuracy given by the algorithm in 

this paper is that the top 50% tokens are retained as encoder input. Visualization is performed 
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according to the detection results. Figure 5 shows the effect of the target 3D surrounding box 

projected on the RGB image. 

Table 1: Comparative experiment of IoU ≥ 0.7 

algorithm model 
AP3D|R40[%](IoU≥0.7) APBEV|R40[%](IoU≥0.7) 

Easy Mod Hard Easy Mod Hard 

M3D-RPN[3]  14.53 11.07 8.65 26.86 21.15 18.36 

RTM3D[16]  19.17 14.20 11.99 24.74 22.03 18.05 

MonoFlex[17]  23.64 17.51 14.83_x0007_- - - 

MonoDLE[14]  17.45 13.66 11.68 24.97 19.33 17.01 

GrooMeD-NMS[18] CNN 19.67 14.32 11.27 27.38 19.75 15.92 

Ground-Aware[19]  23.63 16.16 12.06 - - - 

AutoShape[4]  20.09 14.65 12.07 - - - 

GUPNet[20]  21.10 15.48 12.88 28.58 20.92 17.83 

DEVIANT[21]  24.63 16.54 14.52 32.60 23.04 19.99 

MonoDETR[9] 
CNN 

Transformer 
22.54 15.86 12.93 33.53 22.37 19.12 

Algorithm of this 

paper 

CNN 

Transformer 
24.38 17.78 14.69 36.02 25.68 21.75 

promotion  -0.25 +1.24 -0.14 +2.49 +2.64 +1.76 

Table 1 and Table 2 respectively show the average detection accuracy of experimental results of 

the proposed algorithm and other monocular 3D target detection algorithms on KITTI data set when 

IoU≥0.7 and IoU≥0.5, in which the underline accuracy is the optimal result. As shown in table 1, 

this algorithm under the medium level of detection of AP3D | R40 and all testing level APBEV | 

R40 achieve optimal, compared with suboptimal detection accuracy improved 1.24% and 2.49%, 

respectively, 2.64% and 1.76%. While this article algorithm under the simple and difficult detection 

level of AP3D | R40 for subprime, but compared with the detection precision of the optimal fell by 

0.25% and 0.14%. 

Table 2: Comparative experiment of IoU ≥ 0.5 

algorithm model 
AP3D|R40[%](IoU≥0.5) APBEV|R40[%](IoU≥0.5) 

Easy Mod Hard Easy Mod Hard 

M3D-RPN[3]  49.89 36.14 28.08 55.87 41.36 34.08 

RTM3D[16]  52.59 40.96 34.95 56.90 44.69 41.75 

MonoFlex[17]  - - - - - - 

MonoDLE[14]  55.41 43.42 37.81 60.73 46.87 53.22 

GrooMeD-NMS[18] CNN 55.62 41.07 32.89 61.83 44.98 36.29 

Ground-Aware[19]  58.95 43.99 38.07 64.60 47.76 42.97 

AutoShape[4]  - - - - - - 

GUPNet[20]  58.95 43.99 38.07 64.60 47.76 42.97 

DEVIANT[21]  61.00 46.00 40.18 65.28 49.63 43.50 

MonoDETR[9] 
CNN 

Transformer 
60.56 43.73 37.28 67.10 47.85 42.18 

Algorithm of this 

paper 

CNN 

Transformer 
66.62 48.02 42.56 71.03 52.78 46.04 

promotion  +5.62 +2.02 +2.38 +3.93 +3.15 +2.54 
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As shown in table 2, the algorithm under all testing level AP3D | R40 and APBEV | R40 

achieves optimal, compared with the detection precision of subprime respectively increased by 

5.62%, 2.02%, 2.38%, 3.93%, 3.15% and 2.54%. 

4.4 Ablation Experiment 

In order to further illustrate the depth of the modules is given in this paper, significant network, 

and combines the depth information and significant information of DETR module in monocular 

effectiveness of 3 d target detection algorithm, this article on the ablation experiments KITTI 

validation set, evaluation index for IoU acuity 0.7 when three testing level under AP3D | R40. For 

the convenience of comparison, ablation experiments will be conducted separately for each module 

in this section. The baseline algorithm includes depth module, significant network and DETR 

module that integrates depth information and significant information, in which the top 50% encoder 

token of significance is reserved as input for DETR module.  

Table 3: Deep module ablation experiment 

name 
AP3D|R40[%](IoU≥0.7) 

Easy Mod Hard 

Attention diagram 22.29 16.57 14.19 

Depth module 21.17 16.10 13.94 

reference 24.38 17.78 14.69 

4.4.1 Depth Module Ablation Experiment 

Table 3 shows the ablation results of the depth module. When the attention diagram in the depth 

module is missing, the detection accuracy decreases by 2.09%, 1.21% and 0.5% respectively. When 

the whole depth module is missing, the depth feature and depth position coding information are 

missing in the whole detection algorithm, so the detection accuracy is reduced by 3.21%, 1.68% and 

0.75% respectively. Table 4 Significant network ablation experiments 

Table 4: Significant network ablation experiment 

Token number 
Amount of 

computation 

AP3D|R40[%](IoU≥0.7) 

Easy Mod Hard 

10% 0.86G 23.80 17.11 14.49 

20% 1.52G 23.93 16.59 14.56 

30% 2.10G 24.02 17.46 14.62 

50% 2.99G 24.38 17.78 14.69 

100% 5.10G 23.55 17.77 14.72 

4.4.2 Significant Network Ablation Experiment 

In the ablation experiment in this section, the top 10%, 20%, 30%, 50% and 100% toke

ns with high significance are retained as input of Transformer encoder after the token passe

s through the significant network. Table 4 shows the experimental results of corresponding 

detection accuracy and calculation amount of Transformer encoder respectively. The calculati

on quantity follows DETR[1] calculation criteria. While keeping the top 100% in difficult t

o detect when the token level under AP3D | R40 achieve optimal, its corresponding encode

r computation is 5.10 G. Keep top 50% tokens in simple and moderate detection under the

 difficulty of AP3D | R40 achieve optimal, difficult to detect the difficulty of AP3D | R40
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 subprime, only was reduced by 0.03% compared with the optimal results, but fell by 41.4%

 in the amount of calculation. According to the comprehensive analysis of detection accurac

y and computation amount, the performance is optimal when the top 50% of significant tok

ens are retained. Therefore, 50% tokens are selected as the optimal result of the experiment

 in this paper. 

4.4.3 DETR Module Ablation Experiment 

In the ablation experiment in this section, the DETR module that integrates depth information 

and significant information in this algorithm is replaced by the DETR[1] module based on visual 

features, so as to prove the effectiveness of this module in monocular 3D target detection. 

Table 5: 3DETR module ablation experiment 

name 
AP3D|R40[%](IoU≥0.7) 

Easy Mod Hard 

Visual features DETR 19.63 15.36 13.93 

reference 24.38 17.78 14.69 

Table 5 shows the ablation experiment results of DETR module integrating depth information 

and significant information. Because the DETR module based on visual features lacks encoders and 

decoders related to depth feature information, the detection accuracy decreases by 4.75%, 2.42% 

and 0.76%, respectively. 

5. Summary 

In order to solve the problems of lack of depth feature information, missing feature global 

relationship and high computing cost in monocular 3D target detection task in automatic driving 

scene, a DETR monocular 3D target detection algorithm integrating depth and salient information 

was proposed, which mainly includes trunk network, depth module, salient network and DETR 

model integrating depth and salient information. The main network extracted the visual feature 

information, and the depth module extracted the depth feature information. The saliency network 

predicts the saliency of each token and retains the first K% of tokens as input to Transformer 

encoders in the DETR module to reduce computational costs; The DETR model aggregates visual 

and depth feature information and provides feature global relationships. Experiments on KITTI data 

set show that the proposed algorithm outperforms the existing monocular 3D target detection 

algorithm in several detection indexes, and the effectiveness of each module of the algorithm is 

verified by ablation experiments. In the follow-up work, we will continue to improve the network 

structure, further improve the detection accuracy and expand in more  
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