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Abstract: Ammonia synthesis is one of the most important inorganic production processes 

in chemical industry, and the identification of risk variables in ammonia synthesis process 

is the key link to realize its process control and optimization. Therefore, this paper 

focuses on the identification of key variables in the process of synthetic ammonia. The 

method of combining complex network analysis and symbolic digraph for the first time is 

applied to the ammonia synthesis process, and the conclusion obtained by this method is 

compared with that obtained by using HAZOP to identify the risk of ammonia synthesis 

process. The results show that the combination of complex network analysis and symbolic 

digraph can be used as a tool to identify the risk variables in the process of ammonia 

synthesis, and this method integrates subjective and objective factors, and the obtained 

weights are more scientific and practical, thus improving the accuracy of evaluation.

1. Introduction 

At present, the scale of chemical production is expanding day by day, because the equipment, 

instruments, technological process and production environment that constitute the chemical process 

system are becoming increasingly complex, and the conditions for chemical production are usually 

high temperature, high pressure and toxic[1]. Once an accident happens, it will inevitably endanger 

the safe and stable operation of the whole production process. Therefore, it is particularly important 

to effectively identify the variables that may be at risk in the chemical production process, so as to 

realize the safety assessment of the chemical process. In recent years, many researchers have done a 

lot of research on the identification of key variables in the chemical process. He[2] put forward an 

RB-PLSIELM model, which combines the improved extreme learning machine (RB) with the 

partial least squares (PLSIELM) and the nonlinear model to identify the key risk variables in the 

chemical process. The actual case analysis proves that the proposed method has high accuracy and 

stability. S.J. Watts et al[3] put forward a measurement method for identifying key risk variables in 

chemical process, which applies the degree of inseparability of subspaces of variable subsets to 

provide reasonable estimation of the monitoring performance of variable subsets, and verifies the 

effectiveness of this method in identifying correct key variables through a process case of TE. In 
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addition, in recent years, complex networks have been rising rapidly, and the identification of key 

nodes in complex network models has attracted the attention of many scholars. Complex network is 

an effective tool to describe and analyze complex systems from the aspects of correlation and 

multi-scale[4-5]. In recent years, many scholars have used the model of complex network to 

describe related variables in security analysis, and then turned the problem of risk identification into 

the problem of network analysis. Therefore, in addition to the above research methods, researchers 

also apply complex network theory analysis to the identification of key variables in chemical 

processes. For example, Jiaye Yan et al[6] studied the structural identification of unknown complex 

dynamic networks with complex coupling; Cai et al[7] combined complex network analysis with 

principal component analysis, established a chemical process network model and monitored the 

chemical process, and then detected the fault source of the chemical process system. Similarly, the 

SDG method has developed rapidly in recent years because of its high value in practical industrial 

production. The main aspects of SDG research include risk propagation mechanism in complex 

systems and the development of modeling theory based on in-depth knowledge of complex systems 

[8]. The technical model has been widely used in many fields and achieved good results. For 

example, Mobed et al[9] used SDG modeling to configure sensors in chemical process system, and 

introduced fault evolution sequence and amplitude ratio information to enhance sensor positioning, 

so that abnormal variables in the system could be identified early; JLiu et al[10] proposed a fault 

diagnosis method based on probability extended digraph and fault index reasoning, and simulated 

the TE process as an example. The diagnosis method has high fault resolution in fault location. 

Dong Yuxi et al[11] considered the change characteristics of the correlation of system variables, 

calculated the network statistical index with Pearson correlation coefficient (PCC), and combined 

with SDG model, created the optimal PCC-SDG network and diagnosed the risk of TE process. 

This method accurately identified the risk types and had high accuracy. 

Ammonia synthesis is one of the most important inorganic production processes in chemical 

industry, and the identification of risk variables in ammonia synthesis process is very important for 

its safety assessment. Ammonia synthesis mainly takes coal and natural gas as raw materials, and 

purifies the crude raw gas through shift process, desulfurization and decarbonization process and 

gas refining process. The purified gas is compressed by compressor, and finally enters the reactor to 

make the required finished ammonia[12]. As most domestic synthetic ammonia industrial processes 

involve high temperature and high pressure, there are also many potential safety hazards in the 

whole process. It is of great significance to identify the key variables that may cause failures in the 

synthetic ammonia process in time to ensure the long-term stable operation of the synthetic 

ammonia production plant, and then to ensure the safety of employees' lives and property. 

In order to ensure the long-term stable operation of the ammonia plant. In China, Zhang Feng et 

al[13] took the two-stage ammonia separation process of medium-pressure synthesis as the research 

object, and made hazard analysis on five aspects of the process: medium, process, equipment, 

control and system. Qi Haitao et al[14] used HAZOP method to analyze the meaningful deviation in 

ammonia converter, the causes of deviation and possible consequences, and put forward 

corresponding countermeasures; Qin Yan et al[15] put forward SDG method based on complex 

network target control theory for the identification of risk variables in chemical process, and 

verified this method by taking synthetic ammonia process as one of the cases. Abroad, LvC, WuZ, 

etc[16] have built 17-S risk evaluation indexes and established a multi-level risk evaluation 

standard system from three aspects: safety production conditions, safety technology and safety 

management. ZLA, WTA et al[17] put forward an intelligent quantitative risk assessment method 

(DYN-LSTM-QRA) for ammonia synthesis process based on dynamic mechanism model, and 

applied this method to the leakage accident in ammonia synthesis process to assess the potential 

accident risk caused by dynamic chemical conditions. 
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Although considerable research has been carried out on the identification of risk variables in 

synthetic ammonia process at home and abroad, it is still a blank to combine complex network 

analysis with SDG modeling to identify risk variables in synthetic ammonia process. This paper 

focuses on the identification of risk variables in synthetic ammonia process. In order to improve the 

accuracy and reliability of risk variable identification, this paper first applies complex network 

analysis and SDG modeling to the field of risk variable identification in synthetic ammonia process. 

Traditional HAZOP and SDG modeling are widely used as risk identification methods. HAZOP 

risk identification is characterized by its strong subjectivity, which relies on the experience of 

experts by using the deviation of leading words. SDG modeling method for risk identification is an 

important field of security technology. SDG method can use nodes and branches to describe 

complex systems as qualitative network models. Combining complex network analysis with SDG 

modeling makes up for the objectivity deficiency of traditional HAZOP identification methods and 

improves the comprehensiveness and accuracy of risk identification[18-23]. At present, some 

researchers have applied the method of complex network analysis and SDG modeling to the risk 

identification of synthetic ammonia process, but it is only one of the cases to verify the risk 

identification method of chemical process, yet no research has been found which focuses on the risk 

variable identification of synthetic ammonia process[24-28]. 

In this paper, complex network analysis and SDG modeling are used to identify the risk variables 

of synthetic ammonia process. The research process builds a complex network model based on the 

SDG model of synthetic ammonia chemical process, and identifies the key risk variables of 

synthetic ammonia process by TOPSIS analysis method. Finally, the results obtained by combining 

complex network analysis with SDG modeling are compared with those obtained by traditional 

HAZOP method. 

Compared with previous studies, the innovations of this paper mainly include the following two 

points: 

(1) Focus on the identification of risk variables in synthetic ammonia process for the first time. 

(2) In order to realize the comprehensive and accurate identification of risk variables in synthetic 

ammonia process, the method of combining complex network analysis with SDG modeling is 

applied to the identification of risk variables in synthetic ammonia process for the first time. 

2. SDG Model and Complex Network Model Construction of Ammonia Synthesis Process 

2.1 SDG Model of Synthetic Ammonia 

In the ammonia synthesis process, coal and natural gas are used as raw materials. Firstly, raw 

materials such as coal and natural gas are processed and converted into crude raw materials 

containing nitrogen and hydrogen. Then, the crude raw materials are desulfurized and decarbonized 

to obtain pure nitrogen-hydrogen mixture, which is compressed by a compressor and finally fed into 

a reactor to produce the required finished ammonia. It consists of four types of units: ammonia 

converter, heat exchanger, gas-liquid separator and compressor. Because of the complexity of the 

three-stage reaction in the synthetic tower, the whole reaction effect in the tower is difficult to be 

simulated by a single reactor model. Therefore, three reactors and two heat exchangers are 

integrated to represent the synthetic tower. The specific ammonia synthesis process is shown in 

Figure 1. According to the ammonia synthesis process, the related variables in the system are 

defined. See Table 1 for details. 
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Figure 1: Flow chart of synthetic ammonia process 

Table 1: Definition of variables in synthetic ammonia process 

node name node name node name 

1 Natural gas inlet flow 11 Compressor flow 21 
Liquid level of 

synthetic tower 

2 Soft water inlet flow 12 
Inlet pressure of primary 

reformer 
22 

Synthetic tower 

temperature 

3 Steam valve 13 
Compressor outlet 

pressure 
23 

Synthetic tower 

pressure 

4 the steam flow meter 14 
Outlet pressure of 

secondary reformer 
24 Reaction logistics 

5 
Temperature of 

primary reformer 
15 

Temperature of 

converter cooler 
25 

Liquid ammonia 

storage tank 

6 
Flow rate of primary 

reformer 
16 

Gas outlet temperature 

of shift tower 
26 

Boiler water 

preheater 

7 
Secondary reformer 

flow rate 
17 

Absorption tower liquid 

level 
27 

Low furnace inlet 

temperature 

8 
Pressure of primary 

reformer 
18 gas-liquid separator 28 

Low shift gas outlet 

composition 

9 
Temperature of 

secondary reformer 
19 Methanation furnace 29 Natural gas valve 

10 
Secondary reformer 

pressure 
20 ammonia compressor 30 Air valve 

SDG model is a way to describe large complex systems, which consists of nodes and directed 

edges, where nodes represent system variables. If one variable deviates, it will affect another 

variable. Then, these two variables are connected by directed edges, and the direction is from the 

cause to the result, and the positive and negative effects of the influences are represented by "+"and 

"-"respectively. 

Through the relationship between the variables in the synthetic ammonia process and the 

components of the valve, the variable relationship in the synthetic ammonia process is expressed 

(see Appendix Table 2 for details) and the SDG model of the synthetic ammonia process is obtained, 

as shown in Figure 2. 
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Figure 2: SDG model of ammonia synthesis process 

2.2 Building Complex Network Based on SDG Model of Synthetic Ammonia 

The variables expressed in the SDG model of ammonia synthesis process shown in fig. 3 and the 

relationships among variables are regarded as nodes and edges in the network, respectively, and the 

adjacency matrix A of the network is established. The elements in the matrix A represent the 

correlation between nodes I and J in the network, and when there is correlation between nodes I and 

J, the elements in the matrix are equal to 1; On the contrary, = 0; And when i=j, =0. The adjacency 

matrix of the synthetic ammonia network is as follows: 

 
According to the adjacency matrix, the network structure diagram of synthetic ammonia is 

obtained by using Gephi software, as shown in Figure 3. 

 

Figure 3: Network structure diagram of ammonia synthesis process 
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3. Identification of Key Process Variables of Ammonia Synthesis Based on Complex Network 

3.1 Select the Importance Evaluation Index of Synthetic Ammonia Network Nodes. 

The importance of a single node in a synthetic ammonia network is usually closely related to its 

overall structure. Therefore, the integrity of the network should not be damaged when identifying 

the key nodes in the synthetic ammonia network. In addition, the single index has some limitations 

and one-sidedness in the calculation of network topology analysis, which makes it difficult to 

quantify the importance of a single node in the whole network. Considering the above factors and 

following the principles of rationality, feasibility, purpose and comprehensiveness, point centrality, 

near centrality, intermediate centrality, feature vector centrality and structural hole are selected as 

the indexes for comprehensive evaluation of the nodes in the ammonia synthesis network (see 

Appendix (1)~(6) for the calculation formulas of the indexes). The calculation results of each index 

of the nodes in the ammonia synthesis process network are shown in Table 3. 

Table 3: Results of each index of synthetic ammonia network node 

node DC CC FBC EC C 

1 3 114 28 0.62 0.6 

2 1 140 0 0.214 1 

3 1 140 0 0.214 1 

4 4 112 55 0.693 0.47 

5 4 110 32 0.813 0.53 

6 5 90 192 1 0.38 

7 4 80 210 0.734 0.25 

8 2 135 4 0.318 0.5 

9 3 89 49 0.477 0.333 

10 3 100 24 0.343 0.333 

11 3 102 37 0.368 0.333 

12 2 140 1 0.214 0.5 

13 2 115 24 0.375 0.5 

14 2 104 18 0.264 0.5 

15 1 147 0 0.078 1 

16 3 119 31 0.251 0.333 

17 2 120 0 0.294 1.125 

18 1 127 0 0.154 1 

19 5 99 78 0.499 0.3 

20 3 91 69 0.465 0.333 

21 3 80 137 0.529 0.333 

22 2 106 19 0.236 0.5 

23 5 84 150 0.511 0.21 

24 2 110 28 0.175 0.5 

25 1 138 0 0.054 1 

26 1 152 0 0.048 1 

27 2 124 28 0.154 0.5 

28 4 98 72 0.451 0.47 

29 1 142 0 0.192 1 

30 1 130 0 0.114 1 
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3.2 Determination of Index Weight of Ammonia Synthesis Network Nodes 

The objective weighting method of principal component analysis is used to determine the index 

weight of synthetic ammonia network nodes. This method determines the index weight value 

through the correlation between each index and the variation degree of each index result value, 

which not only avoids the deviation caused by human factors, but also eliminates the mutual 

influence among evaluation indexes (see Appendix (7)~(10) for specific algorithm steps). 

After the index matrix of synthetic ammonia network is standardized by principal component 

analysis, the correlation coefficient matrix R can be obtained. 

 

The eigenvalue of the matrix r can be obtained by matlab software: 

[ ]
i DC CC FBC EC C

W W W W W W  

=[0.0192 0.0311 0.0585 0.0902 0.8010] 

3.3 Identification of Key Variables in Synthetic Ammonia Network Model Based on TOPSIS 

Method 

Table 4: Weighted Normalization Matrix Y of Synthetic Ammonia Network 

 1 2 3 4 5 

1 0.0115 0.0233 0.0078 0.0559 1.5019 

2 0.0038 0.0286 0 0.0193 0.9011 

3 0.0038 0.0286 0 0.0193 0.9011 

4 0.0154 0.023 0.0152 0.0625 1.9176 

5 0.0154 0.0224 0.0088 0.0733 1.7005 

6 0.0192 0.0183 0.0532 0.0902 2.371 

7 0.0154 0.0165 0.0585 0.0662 3.6045 

8 0.0077 0.0277 0.0011 0.0287 1.8023 

9 0.0115 0.0183 0.0135 0.043 2.7074 

10 0.0115 0.0205 0.0067 0.0309 2.7074 

11 0.0115 0.0208 0.0103 0.0332 2.7074 

12 0.0077 0.0286 0.0003 0.0193 1.8023 

13 0.0077 0.0236 0.0067 0.0338 1.8023 

14 0.0077 0.0211 0.005 0.0238 1.8023 

15 0.0038 0.0302 0 0.007 0.9011 

16 0.0115 0.0243 0.0087 0.0226 2.7074 

17 0.0077 0.0246 0 0.0265 0.801 

18 0.0038 0.0261 0 0.0139 0.9011 

19 0.0192 0.0202 0.0216 0.045 3.0038 

20 0.0115 0.0187 0.0193 0.0419 2.7074 

It is convenient and effective to apply TOPSIS (Approximate Ideal Sorting Method) 

multi-attribute decision method to comprehensively evaluate several indexes of the importance of 

ammonia network nodes. Its basic idea is to treat each node in ammonia network as an object to be 
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evaluated, and the importance evaluation indexes of several nodes as attributes of each object, and 

further transform the node importance evaluation into a multi-attribute decision problem. Finally, 

by calculating the closeness between each index of the object to be evaluated and the ideal solution, 

the ranking results are used as the basis for judging the importance degree of nodes (see Appendix 

(11)~(18) for the detailed calculation process of TOPSIS method). 

TOPSIS method is applied to calculate the node importance of ammonia synthesis process 

network; 

(1) From the description of index types in the appendix, it can be known that the center of point 

degree (DC), the center of approach degree (CC), the center of intermediate degree (FBC) and the 

center of feature vector (EC) belong to the benefit type index, and the structural hole (C) belongs to 

the cost type index. Calculate the index matrix of synthetic ammonia network according to formulas 

(11) and (12) to obtain the normalized matrix P, and then combine the normalized matrix P with the 

weight coefficient obtained by principal component analysis to obtain the weighted normalized 

matrix Y as shown below. Due to the limited space, only 20×5 matrices are listed in Table 4 for the 

weighted normalization matrix of ammonia synthesis network, and the weighted normalization 

values of other nodes are shown in Appendix. 

 (2) Further, the positive ideal solution and negative ideal solution of the synthetic ammonia 

network are obtained by formulas (14) and (15). 

A =[0.0192 0.0311 0.0585 0.0902 4.2934] 

A =[0.0038 0.0165 0 0.0043 0.801] 

(3) Finally, formulas (16), (17) and (18) are applied to calculate the distance and closeness of 

each index of synthetic ammonia network to positive and negative ideal solutions, respectively. The 

evaluation results are shown in Table 5 below. 

Table 5: TOPSIS method to evaluate the results of each node of ammonia synthesis network 

node iD 

 iD 

 iC  node iD 

 iD 

 iC  
1 2.7922 0.7029 0.2011 16 1.5882 1.9065 0.5455 

2 3.3935 0.102 0.0292 17 3.4935 0.0239 0.0068 

3 3.3935 0.102 0.0292 18 3.3936 0.101 0.0289 

4 2.3763 1.1183 0.32 19 1.291 2.2033 0.6305 

5 2.5934 0.9023 0.2581 20 1.5873 1.9069 0.5457 

6 1.9224 1.5733 0.4501 21 1.5868 1.9073 0.5459 

7 0.6894 2.8048 0.8027 22 2.4927 1.0014 0.2866 

8 2.4926 1.0016 0.2867 23 0.0493 3.4929 0.9861 

9 1.5874 1.9068 0.5457 24 2.4928 1.0014 0.2866 

10 1.588 1.9066 0.5456 25 3.3938 0.1008 0.0289 

11 1.5878 1.9066 0.5456 26 3.3939 0.1012 0.029 

12 2.4928 1.0014 0.2866 27 2.4928 1.0014 0.2866 

13 2.4923 1.0017 0.2867 28 2.3798 1.1142 0.3189 

14 2.4926 1.0015 0.2866 29 3.3936 0.1017 0.0291 

15 3.3938 0.1011 0.0289 30 3.3937 0.1008 0.0289 

According to the order of importance of the closeness of each node in the synthetic ammonia 

network obtained in Table 4, it can be concluded that node 23, node 7, node 20 and node 22 are the 

key nodes of the synthetic ammonia network model, which correspond to the four variables of 

synthetic tower pressure, secondary reformer flow rate, ammonia compressor and synthetic tower 

temperature in the synthetic ammonia process. This conclusion coincides with Qi Haitao's 

conclusion that "the temperature and pressure of the synthetic tower are the main factors for its safe 
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operation" by applying HAZOP technology to the hazard identification of ammonia synthesis tower. 

In addition, the flow rate of the secondary reformer and the ammonia compressor also have a 

significant impact on the stable operation of the ammonia synthesis process, which is a variable 

prone to problems. 

4. Conclusion 

(1) Based on the SDG model of synthetic ammonia process and the further complex network 

model of synthetic ammonia, this paper analyzes the complex network model of synthetic ammonia, 

selects five indexes of network nodes, such as point centrality, near centrality, intermediate 

centrality, eigenvector centrality and structural hole, and identifies the key variables of synthetic 

ammonia process by combining principal component analysis and TOPSIS method. They are the 

pressure of the synthetic tower, the flow rate of the secondary reformer, the ammonia compressor 

and the temperature of the synthetic tower, which improves the comprehensiveness and accuracy of 

identifying the key variables of the synthetic ammonia process[29]. 

(2) Identifying the key variables in the ammonia synthesis process from the perspective of 

complex network model analysis not only provides theoretical support for predicting and 

controlling the risks in the ammonia synthesis process in advance, but also has certain reference 

significance for maintaining the safety and stability of other large-scale complex processes. Next, 

we can further study the cascading failure propagation caused by the failure of key variables in the 

ammonia synthesis process system, and provide more effective theoretical decision support for the 

risk prediction and prevention of the ammonia synthesis process system[30]. 

(3) Applying the previous research on the identification of key risk variables in chemical process 

to the analysis of complex network model based on synthetic ammonia process has an important 

role in ensuring the safe and stable operation of synthetic ammonia process, but there are still some 

shortcomings. The research methods mentioned above are based on the topological structure and 

statistical characteristics of complex networks to identify key nodes in the system, but the 

importance of driving nodes in the network is not considered from the perspective of complex 

network control theory[31]. With the continuous development of synthetic ammonia process system, 

its network model is becoming more and more complex. At the same time, monitoring based on key 

variables is helpful to reduce the monitoring load of the system and improve the sensitivity of the 

system. Therefore, how to accurately identify key variables in synthetic ammonia process needs to 

be improved. 
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Appendix 

Table 2: Relationship table of synthetic ammonia variables 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1     + +               

2    +                 

3    +                 

4     + +               

5        +             

6       +              

7                     

8                     

9       +   +          + 

10              +       

11       +   +           

12        +     +        

13      -      +         

14                     

15                +     

16                   +  

17                   +  

18                   +  

19                    + 

20                     

21                     

22                     

23                     

24                     

25                     

26                     

27                     

28                 +  +  

29 +                    

30           +          
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Table 2: Relationship table of synthetic ammonia variables 

 21 22 23 24 25 26 27 28 29 30 

1         +  

2           

3           

4           

5           

6           

7 +          

8           

9           

10           

11           

12           

13           

14   +        

15           

16  +         

17           

18           

19           

20 +          

21           

22   +        

23 +   +       

24     +      

25           

26       +    

27        +   

28   +        
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Evaluation index of node importance: 

(1) Centricity of points 

( )
1

ik
DC i

N



                        (1) 

In the above formula, DC is the ratio of the number of connected nodes of node I to the 

maximum number of possible nodes of node I. The larger the value, the more important the node is. 

Is the number of nodes directly connected to node I, and n is the total number of nodes in the 

network. 

(2) Approaching the centrality. 

1
( )

ij

j i

N
CC i

d




          (2) 
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In the formula, CC is the reciprocal of the sum of distances from node I to other nodes in the 

network; Is the shortest path length between node I and node J.. The greater the CC value, the 

greater the degree that the node is in the center of the network, and the higher its position. 

(3) Intermediate centrality 

                      (3) 

In the above formula, FBC refers to the proportion of paths passing through a node among all 

non-repeated paths. The larger the value, the more important the node is. Is the number of paths 

passing through I between nodes S and T; Are all paths between nodes S and T. 

(4) Centricity of eigenvector 

1

1

( )
N

ij j

j

EC i a x



                            (4) 

In the above formula, EC is the eigenvector corresponding to the maximum eigenvalue of the 

network adjacency matrix, and the larger its value is, the more important the node is; λ is the largest 

eigenvalue of adjacency matrix A; Is the eigenvector corresponding to the maximum eigenvalue λ. 

(5) Structural hole 

2

( ) ij iq qj

j q i j

C i p p p
 

 
  
 
                        (5) 

If there is no direct connection and indirect redundancy between two nodes in the network, the 

obstacle between them is the structural hole. Where q is an indirect node connecting nodes I and J; 

The proportion of time spent on J for node I in its total time. The smaller the value of c, the greater 

the degree of structural hole, and the more important the node position. (Note: This formula is the 

restriction degree of each index of structural hole, and the restriction degree of some nodes may be 

null when analyzing the related process network. At this time, the grade degree of structural hole 

index is selected as the result value of this index. The formula is: (6) , Degree can 

describe some characteristics of structural hole nodes; The higher the degree index, the more 

restrictive it is in a certain node's neighborhood. Type , N is the number of 

network nodes). 

Determine the weight of each index of the network: 

(1) establish an evaluation index matrix 

A network with n nodes, if there are m evaluation indexes of node importance, the evaluation 

index matrix x is: 

                               (6) 

(2) Matrix standardization 

Z-score method is used to standardize data transformation. 
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Among them, 
1

N

ij

i
j

x

x
N


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2

2 1

( )

( 1, , ; 1, , )
1

N

ij j

i
j

x x

S i N j m
N





  


 ｡ 

(3) Find the correlation coefficient matrix R. 

( )
1

T

ij p p

Z Z
R r

N
 


                             (8) 

(4) Find the eigenvalue of matrix R. 

The eigenvalue of correlation coefficient matrix R is obtained by MATLAB software. 

1 2, , , p  
, Calculate the contribution rate of each index, that is, the weight coefficient. jw

. 

1

i
j p

i

i

w






                                   (9) 

Step of judging network node importance based on TOPSIS algorithm: 

(1) Standardization of index matrix 

Because there are many indexes, different dimensions and complicated relationships among 

them, it is necessary to standardize the indexes in order to facilitate comparison. Types of indicators 

can be divided into benefit-oriented indicators (the higher the index value, the stronger the ability) 

and cost-oriented indicators (the higher the index value, the worse the ability). According to the 

different types, they can be treated as formula (10) and formula (11). 

Benefit type max

ij

ij

j

x
p

x
                                (10) 

Cost type 

min

j

ij

ij

x
p

x
                          (11) 

Among them,  max max |1j ijx x i N   ,  min min |1j ijx x i N   . Finally, the normalized 

matrix is P= ( )ij N mp  . 

(2) Construct a weighted normalization matrix. 

The weight coefficient of each index obtained by principal component analysis and matrix P 

constitute a weighted normalized matrix, as shown in formula (12). 

1 11 1

1 1

( ) ( )

m m

ij j ij

N m Nm

w p w p

Y y w p

w p w p

 
 

  
 
  

                 (12) 

 

 

 

 

75



 

 

Table 4: Weighted Normalization Matrix Y of Synthetic Ammonia Network 

 1 2 3 4 5 

21 0.0115 0.0165 0.038 0.0477 2.7074 

22 0.0077 0.0218 0.0053 0.0213 1.8023 

23 0.0192 0.0171 0.0415 0.0461 4.2934 

24 0.0077 0.0224 0.0078 0.0158 1.8023 

25 0.0038 0.0283 0 0.0049 0.9011 

26 0.0038 0..0311 0 0.0043 0.9011 

27 0.0077 0.0255 0.0078 0.0139 1.8023 

28 0.0154 0.0199 0.0201 0.0407 1.9144 

29 0.0038 0.0289 0 0.0173 0.9011 

30 0.0038 0.0267 0 0.0103 0.9011 

(3) Determine the positive ideal solution and the negative ideal solution and calculate the 

distance scale 

Determine the positive ideal solution according to the matrix y A
 And negative ideal solution 

A
, See formula (13) and formula (14). 

   max max

1 1max( , , ) , ,i im m
i K

A y y y y



                  (13) 

   min min

1 1min , , , ,i im m

i K

A y y y y



 
  
 

                     (14) 

Type,  1, ,K N . 

Use European distance formula to calculate each index. iA  To positive ideal solution A  And 

negative ideal solution A  See formula (15) and formula (16) for the distance d of. 

 
1/2

2
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1

m

i ij j

j

D y y



 
  
 
                               (15) 

 
1/2

2
min

1

m

i ij j

j

D y y



 
  
 
                               (16) 

(4) Calculate the closeness of each index to the ideal solution. 

The calculation formula of closeness degree C is as shown in Formula (17).    

                            (17) 

According to iC  The value of ranks the importance of nodes. 
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