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Abstract: Location-based services (LBS) are now used in many different industries thanks 

to the quick growth of mobile computing devices, but this also puts user security and 

privacy at risk. A location protection system that combines clustering and differential 

privacy is suggested to solve the issue of uploading and sharing user location information 

with outside parties. Firstly, the surrounding location points are sorted and divided 

according to the density of location information, and k-means clustering is used to 

generalize them; the cluster centers are noise-added by a planar Laplacian mechanism under 

the premise of satisfying geographic indistinguishability to obtain the perturbed position of 

each location point, and then location privacy is protected. The experimental results proved 

that the algorithm in this paper has higher data utilization under the premise of ensuring 

location privacy. 

1. Introduction 

The explosion of sensors and mobile devices has made users' lives easier by enabling them to go 

where they want to go. However, the processing and storage capabilities of these devices have led to 

the leakage of some private information about users, including the use of location-based services 

(LBS), which capture users' location information [1]. To access services, users submit precise location 

data to LBS, yet providing unprocessed location data directly results in the exposure of users' private 

information. For example, when ordering a takeaway, getting transport or meeting other users, they 

have to disclose their location to the LBS server, and this collected location information will 

potentially reveal some basic information about us, which can be used by advertisers to serve 

advertisements and by criminals to carry out criminal activities [2]. The leakage of some of the 

sensitive location information of the users can cause a lot of damage to the users. Current research 

has focused on protecting users' information security and establishing a safe and effective model. 

There have been numerous research results on LBS privacy protection schemes both at home and 

abroad [3-6]. Based on bilinear pairing theory and k-anonymity, Song et al [7] suggested an enhanced 

privacy technique in which the optimal fake location is chosen based on location information. 

Subsequently, Zhang [8] proposed a new geosemantics-based location privacy preserving approach 

that also satisfies k-anonymity, in which a maximum and minimum distance multicentric clustering 

algorithm is used to construct candidate sets and generate virtual location result sets based on their 

Advances in Computer, Signals and Systems (2023) 
Clausius Scientific Press, Canada

DOI: 10.23977/acss.2023.070209 
ISSN 2371-8838 Vol. 7 Num. 2

65



semantic similarity. However, data distribution and background knowledge assaults significantly 

restrict the notions of L-diversity and k-anonymity, making it impossible to provide a high level of 

privacy protection. The primary concept of a location tree is to build a tree structure in accordance 

with predetermined rules, using differential privacy and prefix trees [9] to preserve the privacy of 

track data. Track segments were stored at the tree's nodes. In order to anticipate the next potential 

location based on each site's transfer probability, Markov models were mostly utilized to describe the 

temporal connection between users' real locations [10]. Tareq [11] proposed a density grid-based 

clustering method for online data streams, using a grid-based approach to reduce the number of calls 

to the distance function and thus improve the quality of clustering. Sabarish [12] proposed a graph-

based model for representing trajectory data that uses edge- and vertex-based measures to compute 

the similarity between trajectories, and clusters and identifies similar trajectories based on paths, 

thereby providing privacy guarantees for location privacy. 

In order to maximise the accuracy of query results and improve the efficiency of the algorithm, 

this paper proposes a location privacy algorithm that fuses clustering and differential privacy under 

the condition of satisfying differential privacy. By combining differential privacy with the k-means 

clustering algorithm, the centre of mass points of the clustered set are selected and processed using 

the planar Laplace mechanism to obtain the perturbed locations, and the original locations are queried 

using the perturbed locations instead. 

1) By combining k-means clustering and differential privacy, this paper proposes a mechanism 

that can effectively protect user location privacy. 

2) To verify that the algorithm proposed in this paper outperforms other algorithms and improves 

data availability, the efficiency, and effectiveness of the proposed scheme were tested using real data 

sets. 

2. Definitions and Related Concepts 

2.1. Differential Privacy 

2.1.1. Definition of Differential Privacy 

Definition 1 (ε-differential privacy) the algorithm M satisfies ε-differential privacy (ε- DP), where 

ε > 0, when and only when for any two adjacent datasets D and D′ have: 

∀𝑂 ⊆ Range(𝑀): Pr[𝑀(𝐷) ∈ 𝑂] ≤ Exp(𝜀) × Pr[𝑀(𝐷′) ∈ 𝑂]           (1) 

Where Range (M) denotes the set of all possible outputs of Algorithm M. We consider two datasets 

D and D′ as adjacent datasets, denoted as D ≈ D′ when and only when D = D′ + L or D′ = D + L, 

where D + L denotes the dataset obtained by adding a location point L to the dataset D. 

2.1.2. Privacy Budget 

The privacy budget is the name given to the parameter. Equation (1) demonstrates that a smaller 

will result in a probability distribution of query responses produced by method M over two adjacent 

datasets that is more comparable, making it more challenging for an attacker to ascertain if an element 

is present in the dataset. As a result, there will be greater privacy protection. In order to strike a 

compromise between privacy and the usefulness of the results, the value of is therefore typically 

paired with certain constraints. 

2.1.3. Sensitivity 

Sensitivity 𝛥𝑓 is defined as the maximum L1 parametric distance between the outputs of the query 
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mapping function on adjacent datasets for a given query mapping function𝑓. 

Definition 2 (Sensitivity) For any function 𝑓: 𝐷 → RD: 

∆𝑓 = ||𝑓(𝐷) − 𝑓(𝐷′)||
𝐷,𝐷′

𝑚𝑎𝑥

1
                         (2) 

|| ∙ ||𝟏 denotes the Manhattan distance or L1 parameterisation. Sensitivity is divided into global 

sensitivity, which is determined by function 𝑓, and local sensitivity, which is determined by both 

function f and the specific data in a given data set D. 

2.2. Geographic Indistinguishability 

When analyzing the privacy of data points at a particular location in geospatial terms, a 

geographically undifferentiated technique is applied. With this method, differential privacy is 

extended to geographic location data and the idea of neighboring records in differential privacy is 

changed into two geographically nearby sites. The possibility that two locations will provide the same 

query location is relatively high when two locations are close to one another. As a result, an attacker 

cannot pinpoint the user's precise location using the query location they have provided. This is 

explained in the paragraphs that follow. 

Pr[𝑀(𝐷) ∈ 𝐿] ≤ 𝑒εr × Pr[𝑀(𝐷′) ∈ 𝐿]                      (3) 

Where the parameter 𝜀 denotes the privacy budget per unit of distance and the parameter 𝜀𝑟 

denotes the privacy budget inside a circle of random radius. According to equation (4), the user's real 

position is safeguarded inside a circle of radius r by adding Laplace noise to the true location points 

to ensure geographical indistinguishability. 

2.3. Implementation Mechanisms 

Theorem 1(Laplace mechanism): Given a dataset D. Let the function 𝑓: 𝐷 → Rdhave a sensitivity 

𝛥𝑓, then the randomized algorithm: 

𝑀(𝐷)＝𝑓(𝐷)＋(𝐿𝑎𝑝1(𝜆), . . . , 𝐿𝑎𝑝𝑘(𝜆))                   (4) 

Where 𝜆 =  𝛥𝑓 / 𝜀  is the scale parameter and 𝐿𝑎𝑝( 𝜆) is the additional Laplace noise. The 

privacy budget ε is inversely proportional to the noise variable's relationship to the sensitivity of the 

query function𝛥𝑓. Greater additional Laplace noise and higher privacy protection arise from smaller 

ε. 

The implementation of differential privacy measures in one-dimensional space uses the Laplace 

mechanism from Theorem 1. It must be extended to the continuous plane in order to attain 

geographical indistinguishability in two dimensions. The process calculates perturbation locations 

from a two-dimensional Laplace distribution centered on the real location given parameters and true 

locations. The planar Laplace distribution centered on the Cartesian coordinate system is converted 

into a polar coordinate form centered on the origin to speed up the calculation. The transformed 

probability density function was displayed in Equation (4). 

𝑃𝜀(𝑟, 𝜃) =
𝜀2

2𝜋
𝑟𝑒−𝜀𝑟                               (5) 

The perturbed position 𝑙′can be represented by(𝑟, 𝜃), where r is the distance between 𝑙 and𝑙′, 
and 𝜃 is the angle between r and the baseline of the Cartesian coordinate system. Also𝑟 =

 𝐶𝜀
−1(𝑝) = −

1

𝜀
(𝑊−1 (

𝑝−1

𝜀
) + 1),𝜃~ 𝑈(0, 2𝜋), if the perturbed position 𝑙′ can be expressed as 
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𝑙′ = 𝑙 + (𝑟 sin 𝜃, 𝑟 cos 𝜃)                              (6) 

2.4. K-means Clustering 

K-means is the most popular unsupervised learning method for clustering [13]. Let 𝑋 =
{𝑥1, 𝑥2 … , 𝑥𝑛} be the data set in the d-dimensional Euclidean space 𝑅𝑑. Let 𝑎 = {𝑎1, 𝑎2, … , 𝑎1} be the 

c-clustering centre. Let 𝑧 = [𝑧𝑖𝑘]𝑛×𝑐 , where 𝑧𝑖𝑘  is a binary variable (𝑧𝑖𝑘 ∈ {0,1}. The k-means 

objective function is 𝐽(𝑧, 𝐴) = ∑ ∑ 𝑧𝑖𝑘||𝑥𝑖 − 𝑎𝑘||
2𝑐

𝑘=1
𝑛
𝑖=1 . The k-means algorithm iterates through the 

necessary conditions to minimise the k-mean objective function 𝐽(𝑧, 𝐴) and update the equations for 

the clustering centres and membership relations, respectively, as follows. 

𝑎𝑘 =
∑ 𝑧𝑖𝑗𝑥𝑖𝑗

𝑛
𝑖=1

∑ 𝑧𝑖𝑗
𝑛
𝑖=1

                                   (7) 

𝑧𝑖𝑘 = {
1, 𝑖𝑓 ||𝑥𝑖 − 𝑎𝑘||

2
= min

1≤𝑘≤𝑐
||𝑥𝑖 − 𝑎𝑘||

2
  

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
                  (8) 

||𝑥𝑖 − 𝑎𝑘|| is the Euclidean distance between datapoint 𝑥𝑖 and cluster centre 𝑎𝑘. 

3. Algorithm Design 

To address the problem of low data utilisation of location privacy protection mechanism, k-means 

clustering is added to the differential privacy location protection mechanism. The mechanism can 

well protect the privacy of individual locations and make the perturbed locations similar to the real 

locations through the k-means algorithm and differential privacy, thus improving the availability of 

location data. The basic idea is as follows: for each location point, the points of interest with a distance 

less than r are assigned to the clustering cluster in which the location is located. The algorithm uses 

the cluster centroids to represent the user's activity region within a certain distance, and other location 

points within the region are removed to avoid location redundancy. Finally, to further protect the 

user's privacy, the original location is replaced by the centroid. 

3.1. Location Point Pre-processing Module 

Algorithm 1 Pre-processing noise addition 

Input: 𝐿 =  { 𝑙1, 𝑙2, … , 𝑙𝑛 } ( 𝑙𝑖 = ( 𝑠𝑡 , 𝑡𝑖)), 𝜀, 𝑘 

Output: 𝐶′ 
1. up_sort(L) // Sorting the data set in ascending order according to the density of location 

points 

2. C=get_up_sort(L) // Select k objects as initial clustering centres C={c1,c2, ...,ck} 

3. for i=1 to k do 

4. 𝑠𝑖
′ = 𝑠𝑖 + 𝑟𝑖 cos 𝜃𝑖 

5. 𝑡𝑖
′ = 𝑡𝑖 + 𝑟𝑖 sin 𝜃𝑖 

6. 𝑐𝑖
′ = (𝑠𝑖

′,  𝑡𝑖
′)// Adding noise to the initial clustering centroid ci∈C 

7. end for 

8. return 𝐶′ =  {𝑐1
′ , 𝑐2

′ , . . . , 𝑐𝑘
′ } 

Algorithm 1 first sorts the data set by location density and selects the k densest data objects as 

centroids, followed by polar transformation of the location data and noise addition. In step 4, the 

random noise is determined by 𝑟𝑖  =  𝐶𝜀
−1(𝑛𝑖) with 𝜃𝑖 ~ 𝑈(0, 2𝜋), where 𝑛𝑖 is a random number 
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uniformly distributed between [0,1] and 𝐶𝜀
−1(𝑛𝑖) is the integral function of the probability density 

function 𝐶𝜀,𝑟(𝑛𝑖) over [0, 𝑛𝑖]. 

3.2. Location Data Clustering Module 

Algorithm 2 A location-preserving approach fusing clustering and differential privacy 

(K-DP) 

Input: 𝐿 =  { 𝑙1, 𝑙2, … , 𝑙𝑛 } ( 𝑙𝑖 = ( 𝑠𝑡 , 𝑡𝑖)), 𝐶′, 𝜀, 𝑘 

Output: 𝐿′ 
1. Sj = Ø(1≤j≤k) // Initializing a cluster collection 

2. for i=1 to n do 

3. for j=1 to k do 

4. d[i]=argmin(distance( li, cj' )// Calculate the distance of each sample point li ∈ L to each 

centroid c' and determine the nearest centroid to it 

5. Sj=cj∪{li}// Divide it to the nearest centroid cj’, forming the set of clusters Sj 

6. end for 

7. end for 

8. for i=1 to k do 

9. 𝑠𝑢𝑚 𝑗
′ = ∑ 𝑥𝑖𝑖∈𝑆𝑗

+ 𝑛𝑗   // Sum of points within a set 

10.  𝑛𝑢𝑚 𝑗
′ = |𝑆𝑗|  + 𝑛𝑗// Number of points in the set 

11. 𝑥𝑗
′′ = (𝑠𝑗

′′, 𝑡𝑗
′′) = 𝑠𝑢𝑚𝑗 

′ / 𝑛𝑢𝑚𝑗
′// Update the set Sj centroid xj” 

12. end for 

13. repeat 2-12 until Clustering convergence//Clustering centre C″={xj″} after adding noise 

14. return L'= C″ 

Algorithm 2 is a k-mean clustering difference privacy algorithm for the set of location points 𝐿 =
 { 𝑙1, 𝑙2, … , 𝑙𝑛 } . The first steps 2-7 divide each sample point 𝑙𝑖 ∈ 𝐿 into the nearest centroid 𝑐2

′  

based on its two-parametric distance to each centroid 𝑐′, forming a set of k clusters 𝑆1, 𝑆2, … , 𝑆𝑘. For 

the set 𝑆𝑗(1 ≤ 𝑗 ≤ 𝑘), steps 8-12 then calculate the sum of points in the set ∑ 𝑥𝑖𝑖∈𝑆𝑗
, and the number 

|𝑆𝑗|, add noise to it according to the function sensitivity Δf and privacy budget ε, respectively, and 

finally obtain the updated centroid 𝑥𝑗
′′  of the set 𝑆𝑗 .where the random noise 𝑛𝑗  satisfies 

𝑛𝑗~𝐿𝑎𝑝(𝑏) and has 𝑏 = 𝛥𝑓/𝜀. Finally, the protected location data set 𝐿′ = 𝐶′′ is output by step 

14, where the perturbed clustered centroids replace the original locations. 

3.3. Algorithm Security Analysis 

The algorithm in this paper adds noise to the clustered data that obeys the 𝐿𝑎𝑝(𝜆) distribution of 

the Laplace distribution, so that the noise results satisfy the differential privacy constraint. The proof 

is as follows: the probability density function𝑃𝑟(𝑢) =
1

2𝑏
𝑒

|𝑢|

𝑏  of the Laplace mechanism is known, x 

and y represent two different locations, the probability density function of Prx is Fm (x, f, ε), and the 

probability density function of Pry is Fm (y, f, ε), and for a given output value Z, there are: 

𝑃𝑟𝑥(𝑍)

𝑃𝑟𝑦(𝑍)
= ∏

𝑒
−

𝜀|𝑓(𝑥)𝑖−𝑍𝑖|
∆𝑓

𝑒
−

𝜀|𝑓(𝑦)𝑖−𝑍𝑖|
∆𝑓

𝑘

𝑖=1

= ∏ 𝑒
𝜀|𝑓(𝑦)𝑖−𝑍𝑖|−𝜀|𝑓(𝑥)𝑖−𝑍𝑖|

∆𝑓

𝑘

𝑖=1

 

≤ ∏ 𝑒
𝜀(|𝑓(𝑦)𝑖|−|𝑓(𝑥)𝑖|)

∆𝑓𝑘
𝑖=1 = 𝑒

𝜀||𝑓(𝑦)𝑖|−|𝑓(𝑥)𝑖||1
∆𝑓 ≤ 𝑒𝜀                  (9) 
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As a result, the technique in this work meets the need for differential privacy as stated in the 

definition. 

4. Example Analysis 

4.1. Experimental Setup 

The hardware environment used for the experiments was an 11th generation Intel(R) Core(TM) i5 

2.40GHz with 16GB of RAM, implemented using the Python programming language and Windows 

10 as the operating system platform. The dataset used was Gowalla, a social network that collects 

location data and allows users to share their location by checking in. The dataset uses a public API to 

collect information, has 196,591 locations and 950,327 domains, and collected 6,442,890 check-ins 

from users over the period from February 2009 to October 2010. 

4.2. Experimental Analysis 

The MSE was used to measure data availability, comparing data availability using the differential 

privacy algorithm alone and analysing the impact of the privacy budget ε on data usage, where a 

lower error represents higher data availability. The analysis of the effect of the privacy budget ε on 

the algorithm error is shown in Figure 1. 
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Figure 1: Error comparison of different algorithms under different privacy budgets. 

From the Laplace probability density function, it can be deduced that the degree of privacy 

protection decreases with increasing ε. This experimental result also reflects this theory. Furthermore, 

it is easy to see from the experimental results that the privacy level of this algorithm is better than 

that of the traditional differential privacy algorithm because k-means clustering generates a centre of 

mass and all positions are replaced by a unique centre of mass, hence the better privacy level and 

higher data availability of K-DP. 

The impact of N, the number of places to be secured, on the level of privacy protection is examined 

in Figure 2. The experimental findings show that as the number of sites to be protected N reduces, 

the degree of privacy protection improves; the greater N, the poorer the degree of privacy protection. 

Similar to how it can be observed that the data availability of the technique in this study is higher 

than that of conventional differential privacy approaches. 
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Figure 2: The influence of quantity N on the degree of privacy protection. 

5. Conclusion 

In this paper, a new solution to the privacy problem of location data is proposed, and an algorithm 

that fuses k-means clustering with differential privacy is designed to interfere with the user's location 

data. In order to combine the strong privacy of differential privacy and the advantage of small error 

of k-means clustering, a geographically indistinguishable model that satisfies the differential privacy 

is used for the noise addition to avoid the impact on the clustering results. Through the theoretical 

analysis and experiments, it is proved that the algorithm in this paper can improve the utilisation of 

the data and at the same time effectively protect the security of the user data. 
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