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Abstract: The proposed YOLOvS model for steel bar detection has been improved with the
addition of an ECA-Net attention module and Ghost Conv to reduce model volume. The Neck
layer's feature pyramid module has been replaced with a weighted two-way feature pyramid
network structure for better feature fusion. Additionally, the loss function and image
processing have been improved for better detection efficiency. The experimental results on
the reinforced data set show that the volume of the improved YOLO -EB model is reduced by
11 % compared with the original version, and the mAP is increased by 1.6 %, which meets
the requirements of actual use.

1. Introduction

Whether in the production process of steel bars or the process of use, the statistics of the number
of steel bars is a very important link. For example, at the construction site, for a truck with a large
number of steel bars that enters the site, the acceptance personnel need to manually root the steel bars
on the truck and confirm the specifications and quantities of the steel bars before the steel bar truck
enters the site to unload.

To avoid the inevitable errors of manual counting, and save time and manpower, Traditional digital
image processing is mainly based on the image recognition and counting of steel bars based on the
characteristic information such as the grayscale and shape of the steel bar picture. The detection effect
is unstable 131,

The success of deep learning technology in object detection tasks on images has led more and
more researchers to apply deep learning technology to reinforcement technology tasks. In 2010, Chen
Zhikun ™ and others studied the application of the BP neural network to steel bar counting, which
proved the feasibility of this method. Compared with traditional algorithms, deep learning methods
have higher detection accuracy and speed and are more robust. In 2020, Xie Haizhen " proposed a
new target monitoring algorithm applied to steel bar counting. In 2021, based on the Faster R-CNN
model, Wang Huifang proposed a deep learning-based reinforcement counting algorithm Rebar R-
CNN (9,

Based on the YOLOvV5 model, combined with the attention mechanism, Bi FPN, Ghost Net, a-
IoU, and other technologies, and proposed a reprocessing method for detection pictures, this paper
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constructs a lightweight steel target embedded in the attention mechanism The detection model
greatly reduces the volume of the original model while improving the detection accuracy.

2. Basic theory

The YOLOVS is a lightweight target detection algorithm that is implemented using the Python
framework. The model consists of four versions, namely YOLOvS5s, YOLOv5m, YOLOvSI, and
YOLOVS5x. These versions are built by deepening and widening the network based on the YOLOVS5s,
which is the shallowest and smallest feature map width among the four.The network model of
YOLOVS is mainly divided into 4 parts, including input, backbone network (Backbone), Neck module,
and output. Its network structure is shown in Figure 1.
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Figure 1 YOLOVS network structure

2.1 Input

Figure 2 Mosaic effect diagram

Yolov5 takes in three main components for its input: mosaic data augmentation, adaptive anchor
box calculation, and adaptive image scaling. During the model training phase, mosaic data
augmentation is used to increase the number of small objects in the dataset, thereby enhancing the
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model's ability to detect small objects. The result is shown in Figure 2. During model training, the
network generates a predicted frame using the initial anchor frame, compares it with the actual frame,
and updates the network parameters iteratively in reverse to improve its accuracy. Meanwhile,
adaptive image scaling is used to resize the original image to a standardized size, allowing the model
to detect objects consistently across different image sizes. Figure 2 is the result of the adaptive scaling
of pictures.

2.2 Backbone

The original model's Backbone consists mainly of Conv, Focus, C3 modules, and a spatial pyramid
pooling module . The Conv module performs convolution, batch normalization, and activation
function operations on the input feature map.

2.3 Neck module

This module, like the Neck structure in YOLO v4, mainly uses the feature pyramid structure [
plus the composition of the Path Aggregation Network, which can strengthen the network for different
scaling scales. The ability to fuse object features. In the model, the combination of operations involves
the FPN layer, which transmits strong semantic features from top to bottom, and the PAN layer, which
transmits strong positional features from bottom to top. The network also aggregates parameters from
different backbone layers to different detection layers, enhancing the network's feature fusion
capability. The structure of FPN and PANet is shown in Figure 3.
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Figure 3 FPN, PANet structure
2.4 Output

The output of the YOLOVS5 original model uses the GIOU P! function as the loss function of the
bounding box, adjusts the model parameters, and corrects the position of the predicted box. During
target detection post-processing, using NMS ['% to filter multiple target frames, which enhances the
detection ability of multiple targets and occluded targets.

3. Model improvement and optimization
3.1 Improvement of backbone network

3.1.1 Add attention mechanism module

The small and dense rebar sections in the picture occupy few pixels and are easily affected by the
background, which can result in inaccurate detection. To address this issue, the new model includes
an attention mechanism in the last layer of the backbone. This mechanism enables the model to assign
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varying weights to different parts of the input, extract more critical information, and make more
precise judgments.

Although adding the attention mechanism increases the computational overhead and storage
requirements of the model, it can effectively extract feature information for small and dense objects,
thus improving detection accuracy.

The ECA [ attention module (Efficient Channel Attention) mainly starts from the two aspects of
dimension reduction and cross-channel information interaction in the SE "2 module. It is inefficient
and unnecessary to capture the relationship of all channels, and the latter plays a very important role
in improving the performance of the CNN network. The ECA module realizes an optimization
improvement of the SE module. The ECA module structure is shown in Figure 4.
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Figure 4 ECA module structure with a k value of 5

The SE attention mechanism compresses the input feature map's channels, which can hinder the
learning of dependencies between them. However, the ECA attention mechanism uses 1-dimensional
convolution to facilitate local cross-channel interaction and extract dependencies between channels
without reducing the dimensionality of the input. This approach avoids channel compression and
improves the model's ability to learn inter-channel relationships. Therefore, for the Y, corresponding

weights W,, W*, W>... W, the author only considers the information exchange between the current

channel and its k neighboring channels, and the number of parameters is kxC, so the weight matrix
is calculated as follows (1) :

kK
wfa(z Wi"yij]’ y! e Q) (1)
j=1

The k domain channels o represented Y;therein Q' are Sigmoid functions.

k is determined by the formula (2), the channel dimension C is proportional to the convolution
kernel size k, C =27

t|0 4 represents the odd number closest to t, b takes 1, y takes 2.

l0g,(©) , b
v

k=y(c)= 2

odd

E CA module is as follows:

(1) Perform a global average pooling operation on the input feature map;

(2) The weight of each channel is obtained by performing a 1D convolution operation with a kernel
size of k and passing the output through the Sigmoid activation function w;

(3) The final output feature map is obtained by multiplying the weights with the corresponding
elements of the original input feature map.

It can be seen that the idea and operation of the ECA attention mechanism are extremely simple
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and have little impact on the network processing speed, so this paper chooses ECA as the attention
module.

3.1.2 Replace the Conv module in the original network

The Conv module mainly performs convolution on the input feature map, batch normalization, and
activation function operation. The structure is shown in Figure 5.

Figure 5 Conv module structure

Ghost Conv ¥ module is shown in Figure 6. The original one-step convolution is changed to two-
step convolution. The first step is to perform conventional convolution, but the number of output
channels is reduced. The second step is in Depth separable convolution is performed on a one-step
basis. It is worth noting that the number of output channels of depth separable convolution may be an
integer multiple of the number of input channels, and the number of convolution kernels is equal to
the number of output channels. In addition, the second step of convolution has a parallel connection
branch, which is directly the output of the first step of convolution. Ghost Conv extracts rich feature
information through conventional convolution operations, and uses connection branch operations to
generate redundant feature information, which can not only effectively reduce the computing
resources required by the model, but also make the overall model smaller Simple, and easy to
implement.

Identity

Conv

Input

Output

Figure 6 GhostConv module structure
3.2 Improvement of feature pyramid structure

BiFPN "5 a novel feature fusion method that was proposed by Google in 2020. The method
employs efficient bi-directional cross-scale connections and weighted feature fusion to combine
features. It first performs top-down feature fusion and then bottom-up feature fusion. The paper
proposes several optimization methods for cross-scale connections to enhance the efficiency of the
model.One of these optimization methods is based on the idea that if a node has only one input edge
without feature fusion, its contribution to the feature network that fuses different features will be
smaller. Therefore, BiFPN simplifies the bidirectional network by removing the intermediate nodes
of P3 and P7 in PANet.Another optimization method that BiFPN uses is to add spanning connections
to connect input nodes of the same scale to output nodes. Since they are in the same layer, this method
incorporates more features without adding too much computational cost. Lastly, in contrast to the
single top-down and bottom-up paths of PANet, BiFPN considers each bidirectional path as a feature
network layer and repeats the same layer multiple times to achieve higher-level feature fusion. The
BiFPN network structure is shown in the figure 7.
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Figure 7 BiFPN module structure

When fusing features with different resolutions, a common approach is to resize them to the same
resolution and then fuse them. However, this approach does not account for the unequal contributions
of different input features. To address this issue, He Kaiming suggests adding a weight to each input
and letting the network learn the importance of each input feature. Since scalar weights are unbounded,
it can lead to unstable training. Therefore, BiFPN uses weight normalization to constrain the value
range of each weight. After comparing three different methods, BiFPN finally uses Fast normalized
fusion. The formula is as follows ( 3 ) :

@
Ozzim l; 3)

o,and o, are learnable weights, & ( epsilon ) = 0.0001 is a very small number to ensure that the

denominator is not 0, I;representing the characteristics of the input. Among them, @, >0, after passing

Relu to ensure the stability of the value, the value of each normalized weight is also between 0 and 1.
In the original article, the author introduced the situation of two fusion features in the sixth layer,
such as formulas (4), (5):

P — cony( @ P e Resize(Py), 4)
(O] +Cl)2 +&

P = Conv(2-

P+, P+, - Resize(P;’“')) ®)]
W, + @, +w,+&
P It is the top-down intermediate feature, P™* the bottom-up output feature, P," the input feature

of the 7th layer, and F’5°”t the output feature of the 5th layer, Resize is upsampling or downsampling,

and Conv is a convolution operation. To further improve efficiency, BiFPN uses depthwise separable
convolutions for feature fusion and adds batch normalization and activation functions after each
convolution.

3.3 Improvement of loss function

YOLOVS5's bounding box regression (bounding box, bbox ) uses GI o U as the loss function, GI o
U The Loss formula is shown in (6) below.
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lc\(AUB)| (6)

Leiuy =1-10U + |C|

In the formula, C is for any two boxes A and B, and C is a minimum box that can enclose them.
However, GloU also has its disadvantages: If two prediction boxes have the same height and width
and are on the same horizontal plane, GIoU degenerates into IoU. However, both GloU and IoU suffer
from two disadvantages: slower convergence and less accurate regression.So this paper chooses -
TIoU 91 as the loss function of bbox regression.

a- IoU is a simple transformation based on Generalized IoU, Distance IoU '], and Complete IoU,
by adaptively reweighting the loss and gradient of high and low IoU targets, improving bbox
regression accuracy. According to the experiments conducted by the author of a-IoU, a - IoU loss
exceeds the other types of losses mentioned above, especially in the case of high bbox regression
accuracy mAP75:95, the advantage of a-IoU loss in high precision level is more obvious. Moreover,
a can be adjusted to give the detector more flexibility in achieving different levels of bbox regression

accuracy.
The original Io U calculation formulas are as follows (7), (8), (9), (10):
Liouy =1- 10U (7)
c\(BUB*
Leov, =1 10U +M (®)
Cl
Loy, =1—loU +2-©:0%) )
(DloU) — 2

C

2 b,bgt
Leiow) =1— IoU +%+ﬂv (10)

The improved Io U calculation formulas are as follows ( 11 ), (12),(13),(14):
Liytou) =1-10U* (11)
BUBH[)

Ly =1 o= 4| [S1BUB™) (12)

C]

., P(b,b*)

Loy =1 10U+ =5 (13)

2a b,bgt
Loy =1-loU“ + 2222 éZa )+ (pvy” (14)

3.4 Improved YOLOVS network structure

The YOLOVS algorithm itself has good engineering applicability, and users can make
improvements according to their own needs based on it. According to the theoretical analysis and
research in the previous chapters, a new improved YOLOvS model YOLO-EB (YOLO-ECA-BiFPN
) can be obtained, and its model structure is shown in Table 1 below. In the table, the column "From"
indicates the layer where the input comes from. A value of -1 indicates the input is from the previous
layer. The "Params" column indicates the size of the parameters, while the "Module" column indicates
the type of module used. The "Arguments" column provides information about the module parameters,
such as the number of input and output channels, the size of the convolution kernel, stride information,
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and so on.

Table 1 YOLO-EB network structure

Num from params Module arguments
0 -1 928 Conv [3, 32, 3]
1 -1 10144 GhostConv [32, 64, 3, 2]
2 -1 18816 C3 [64, 64, 1]
3 -1 38720 GhostConv [64, 128, 3, 2]
4 -1 156928 C3 [128, 128, 3]
5 -1 151168 GhostConv [128, 256, 3, 2]
6 -1 625152 C3 [256, 256, 3]
7 -1 597248 GhostConv [256, 512, 3, 2]
8 -1 118272 C3 [512,512, 1]
9 -1 261 Eca [512, 512]
10 -1 656896 SPPF [512, 512, 5]
11 -1 69248 GhostConv [512, 256, 1, 1]
12 -1 0 Upsample [None, 2, 'nearest']
13 -1 0 Concat [1]
14 -1 361984 C3 [512, 256, 1, False]
15 -1 18240 GhostConv [256, 128, 1, 1]
16 -1 0 Upsample [None, 2, 'nearest']
17 -1 0 Concat [1]
18 -1 90880 C3 [256, 128, 1, False]
19 -1 75584 GhostConv [128, 128, 3, 2]
20 -1 0 Concat [1]
21 -1 361984 C3 [512, 256, 1, False]
22 -1 590336 Conv [256, 256,3, 2]
23 -1 0 Concat [1]
24 -1 1182720 C3 [512,512, 1, False]

4. Experimental image processing

4.1 Input pre-processing

After many experiments, it can be proved that image slicing processing of high-definition steel bar
images before detection can improve model training speed and detection accuracy. Figures 8 and 9

are the comparison charts of the box_loss curve and the Map 0.5 curve in a certain test respectively.
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Figure 8 Box_loss comparison chart
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Figure 9 MaP_0.5 comparison chart
4.2 Image processing after detection

After splicing multiple sliced images, there will be a large number of overlapping detection frames
on the picture, so we will perform NMS again here to delete the redundant prediction frames, leaving
the prediction frames with high confidence.

We prioritize the prediction boxes with high confidence, and then make judgments based on
whether the intersecting area between the selected prediction boxes and other prediction boxes is less
than a threshold (we set it to 0.3 in the test ), and if it is less than, it is considered a correct one.
prediction box, otherwise deletes the prediction box. In Figure 10, the center point is used instead of
the prediction box for easy Vielving.

Figure 10 The renderings after NMS operation
5. Experiments
5.1 Experimental environment

The version of the computer operating system used in this experiment is ubuntu 18.04, and the
CPU model is Intel(R) Platinum 8176 CPU @ 2.1 0GHz x1 12. The GPU model is two NVIDIA 2
080 ti, the memory size of a single graphics card is 11 GB, and the memory size is 187.5 GB. The
YOLOVS model is based on the Pytorch deep learning framework, the programming language is
Python, and the torch version 1.7.1 and CUDA1 0.1 are used to accelerate the GPU. The parameter
settings are shown in Table 2 below.

Table 2 parameter settings

parameter name parameter value
Momentum 0.937
Weight decacy ( weight decay ) 0.0005 _
Batch size (batch size) 12
Learning_rate (learning rate) 0.01
Epochs (iteration rounds) 100
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5.2 Datasets

The data set in this paper comes from the "Intelligent Inventory - Reinforcement Number Al
Recognition Contest". The division and use of the data set are shown in Table 3. It can be seen from
Table 3 that there are only 250 pictures in the Train dataset. To improve the robustness of the model,
this paper uses data enhancement methods such as mosaic, flipping, and contrast enhancement to
expand the dataset during the training process. The way of data enhancement is shown in Figure 10.
According to the ratio of 8:2, the data set is divided into training set and a test set. The training set
has 200 pictures, and the test set has 50 pictures. There is only steel bar detection objects in the data
set. As shown in Figure 11, the analysis and visualization results of the data set are shown. (a) is the
distribution map of the center point of the object, and the horizontal and vertical coordinates represent
the position of the center point. (b) is the distribution map of the object size.

Table 3 Dataset division and usage

data set Number of pictures/sheet use
train 200 model training
Val 50 m AP calculation
test 200 Used to view the actual effect of the model

(h)

Figure 10 Data_augmentation (a,b,c,d are to flip the picture, change the contrast, rotate, change the
display range and combination )
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Figure 11 Data set analysis (Figure a shows the target center point distribution, Figure b shows the
target size distribution)
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5.3 Model evaluation index

MAP is a commonly used evaluation index in the target detection model. The AP (Average
Precision) of each category is obtained by calculating the area under the P-R curve. Its full English
name is (Mean Average Precision), that is, the average of the average precision. The formula is shown
in (15).

Precision measures how accurate the model prediction is, that is, the percentage of correct
predictions, and Recall measures the ability of the model to find all positive examples.

mAP:LZn:APi)/n (15)

In the formula, n is the number of categories in the data set, because there is only one category for
steel bar detection, so n= 1, m AP =AP. Precision is calculated as follows (16) as P, and Recall as
follows (17) as R.

R TP (16)
" TP+FP all _detection _boxes

R— TP _ TP (17)
TP+FN all _GroundTrue _boxes

In the formula, TP is a true positive, FP is a false positive, TN is a true negative, and FN is a false
negative.

Take Recall as the horizontal axis and Precision as the vertical axis, and draw the connection line
for each value to get the PR graph. As Recall increases, Precision will gradually decrease and fluctuate
around a certain value. AP is the average precision. The integral method is used to calculate the area
enclosed by the PR curve and the coordinate axis. The actual operation does not calculate the integral
but performs a smoothing operation on it to simplify the calculation. For each point on the PR curve,
Precision takes the Click the largest value on the right, and after calculating the AP, adds and averages
the APs of all categories to get the mAP on the entire data set.

5.4 Analysis of experimental results

In this paper, the models trained by different networks are used for Val data set and Test data set
detection, and the model weight and mAP index in the statistical detection process are counted. The
comparison charts of the loss curves of the two models are shown in Figures 12 and 13. It can be seen
that the YOLO -EB model has a faster convergence speed and a smaller loss value than the original

model.
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Figure 12 Box_loss graph
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Figure 13 Obj_loss graph

From Table 4 that after the same training times, the YOLOv5s model in the YOLOVS detection
algorithm is a lightweight network model compared with the two-stage Faster-RCNN and the one-
stage YOLOvV3. The YOLOV5-EB model is in The basis of the YOLOvS5s model is reduced by 1.58
MB, and the average precision is also increased by 0.01. YOLOv 3-SPP is comparable to YOLOVS-
CB in average accuracy, but its weight is about 3.4 times the weight of YOLOv5-CB model, which
is not conducive to the deployment and use in work scenes.

Table 4 Comparison of experimental results

Model weight /MB mAP
Faster-RCNN (ResNet50) 330 0.715
YOLOV3-SPP 123.4 0.973
YOLOV5M 4.5 0.970
YOLOVS5S 14.08 0.965
YOLO-EB 125 0.975

5.5 Ablation experiment

The ablation comparison experiment is to verify the optimization effect of each improved module.
The experimental results are shown in Table 5. The improvements represent adding the ECA attention
mechanism to the backbone network, modifying the pyramid structure of the original network,
modifying the loss function, and the conv structure. Modifications. As can be seen from the data in
the table, adding the attention mechanism, modifying the pyramid structure, and modifying the loss
function can improve the average accuracy, but the model size is increasing. After modifying the conv
structure, although the average accuracy has decreased, the model size has decreased. 15%. After
adding all the improvements to the original model, not only the model size was reduced by about 1.1
%, but the average accuracy increased by about 1.6 %.

Table 5 Ablation experiments results

Weight/  Join the E Modifying Modify the loss Modify the
model the Feature . conv mAP
MB CA module . function
Pyramid structure

YOLOVS5S 14.08 X X X X 0.960
model 1 14.7 \ X X X 0.966
model 2 145 X \ X X 0.965
model 3 144 X X \/ X 0.967 _
model 4 12 X X X \ 0.957

YOLO-EB 12.5 V \ \ \/ 0.975
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5.6 Analysis of model testing results

To determine the actual detection effect of the new model, select some pictures in the test set for
testing. Figure 14 is a comparison of the test results of the two models of YOLO-EB and YOLOVS.
It can be seen in a, b, and d that the YOLO-EB model can detect the steel bar section that the YOLOvVS
model cannot detect. In ¢ and e, the YOLO-EB model can avoid the identification of interferers, while
YOLOVS is misidentified, indicating that the YOLO-EB model shows a stronger performance than
YOLO vs5.

ey
rebar 0.85_‘}:_‘
ale

rebar 0.88 388,

"% rebar 0.72

Figure 14 Test result comparison chart (The blue prediction box is the YOLO-EB model, and the
purple is the YOLOv5s model)

6. Conclusions

This paper builds a lightweight steel target detection model by combining YOLOvS5 with various
technologies such as attention mechanism, BiFPN, Ghost Net, and a-loU. The model is embedded
with an attention mechanism that greatly improves the detection accuracy while reducing the model's
size. This makes it suitable for deployment in steel factories or construction sites.

However, the model still faces challenges in recognizing pictures with mutual shadowing of steel
bars and blurred boundaries between the background and the steel bar section, resulting in
misrecognition and missing recognition.

In the next phase of research, the model's structure will be further improved to increase its
robustness and recognition accuracy.
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