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Abstract: Transmission valve component is an important part of automobile manufacture. 

The success of the assembly of transmission valve is directly related to driving safety of 

vehicles. While localizing transmission assembly defects is particularly important in 

assembly of transmission valve component. As an image processing problem, real-time 

assembly images of transmission valve component are adopted to determine whether the 

assembly is correct or wrong. Transmission valve component in these images have small, 

severe reflection, and sparse properties, which increases the difficulty of detection. Therefore, 

this paper proposes a transmission defects localization network based on Siamese network 

for improving the performance of assembly of transmission valve components. In our model, 

we establish an image similarity evaluation network with designed multi-scale features 

fusion approach. Furthermore, in order to reduce intra-class spacing by similar transmission 

valve part samples on evaluation action, an improved binary cross entropy and focal loss 

function is discovered for feature re-processing. Finally, experimental results on real-world 

transmission assembly dataset indicate that our proposed approach outperforms other 

compared methods. 

1. Introduction 

Transmission, as a typical mechanical product, is an important part of automotive transmission 

system [1]. In the rapidly developing automobile industry, transmission directly affects driving safety 

and fuel economy characteristics of cars [2]. Therefore, requirements of users for its quality, safety, 

and performance are also increasingly high. 

Transmission valve component is a key part of automatic transmission shift [3]. Its assembly is an 

important link in the formation of products in the later stages of transmission manufacturing and is 

the top priority of transmission product quality control [4]. Transmissions are intricate mechanical 

products with numerous parts, thus the accuracy of its valve component assembly must meet strict 

standards. At the same time, environmental constraints and unregulated assembly operations have 
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been in the assembly of transmission valve components, resulting in incorrect treatment. Hence, error-

proof detection [5] during assembly of transmission valves is of great significance. 

In general, transmission valve components are manually assembled and inspected. The assembly 

process for transmissions involves many different and intricate elements, making it certain that there 

would be potential risks including incorrect installation, missing installation, and numerous 

installations. Using machine vision detection [6] in place of manual detection can significantly 

increase production efficiency and lower the rate of error since manual detection of transmission 

valve components assembly is labor-intensive and inefficient. Deep learning-based solutions may 

detect smaller and more complicated product faults under frequent environmental changes, improve 

detection efficiency [7]. Therefore, deep learning-based solutions become the primary technique to 

address this issue in complex quality detection scenarios [8]. 

Currently, image processing algorithms for target [9] detection, such as binary morphological 

approaches [10], similarity measurement techniques [11], and segmentation techniques [12], have 

been thoroughly investigated. These methods, whereas, have shortcomings in poor contrast, uneven 

brightness, and irregular form when identifying and localizing tiny objects. They also demand that 

identified images be matched with the matching reference samples. 

Principal component analysis and support vector machines are used in a revolutionary real-time 

monitoring system that is designed to automatically detect faults [13]. However, missing data 

sensitivity is one of their drawbacks. A brand-new self-reference template-guided image 

decomposition method is created to find surface flaws in strip steel [14]. A raster ROI, as described 

by [15] in 2021, is an algorithm designed to identify streak flaws on the customer content area. 

Nevertheless, drawback is that they focus on the component problems specifically. 

Literature [16] unique machine learning-based technique for error detection that just needs the raw 

output data from a susceptibility test. Its shortcoming is also missing data sensitivity. A novel method 

is designed to gauge the efficacy of error detection techniques [17]. Instead of evaluating assembly 

outcomes, it evaluates inspection procedures. 

For transmission valve components, images have small, severe reflection, and sparse properties, 

which limit the implementation of localizing transmission assembly defects with traditional detection 

techniques. Assembled parts in overall transmission images are small, severe reflection, and highly 

sparse which requires transmission defect localization models are capable of anti-reflection and 

detailed features extraction. However, unlike transmission assembly dataset, prominent open-source 

datasets (e.g., ImageNet [18], COCO [19], and PASCAL VOC2012 [20]) place more emphasis on 

big objects. This means that these datasets cannot be used to pre-train deep neural networks for 

transmission valve component assembly defects localization. 

Hence, in this letter, we reveal that there is no analogous technique to prevent assembly error 

detection during manual assembly of transmission valve components. To alleviate this problem, we 

propose a transmission defects localization network, based on Siamese network to evaluate the 

similarity of transmission assembly by extracting detailed features to localize transmission assembly 

defects. In conclusion, our main contributions are as follows: 

(1) A transmission defects localization network is presented localize transmission assembly 

defects with evaluating the similarity of transmission assembly by extracting detailed features without 

any manually operations. The outcomes of the simulation demonstrate its high viability. 

(2) To improve the performance of network for various sizes, multi-scale features fusion approach 

is designed. In addition, to reduce intra-class spacing by similar transmission valve part samples, an 

improved binary cross entropy and focal loss function is explored on end-to-end training techniques 

to teach the network. 

(3) Great results are obtained when our network is used in the actual transmission assembly shop. 
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2. Related Work 

2.1. Metric Learning 

As opposed to contrastive learning [21], metric learning [22] is an approach of thinking that uses 

data to determine how far apart two objects are. Its fundamental concept is around the measurement 

and computation of distances. To facilitate learning, the primary principle is to reduce dimensionality 

to a lower dimensional space. Finding a suitable space is essentially the same as finding an appropriate 

distance metric. Thus, metric learning is straightforward attempting to learn an appropriate distance 

metric. 

Due to its limited capacity to handle original data, traditional metric learning need first pre-process 

the input using the expertise of feature engineering before using the metric learning algorithm to learn. 

As a result, certain traditional metric learning algorithms can learn just linear features. Despite some 

kernel approaches for extracting non-linear features have been put forth, however, their learning 

impact has not greatly increased. Since the ability of activation function to learn non-linear features, 

deep learning approaches can learn high-quality features from original data. In order to achieve the 

best outcomes, deep neural network architecture and conventional metric learning methods can be 

combined. 

2.2. Siamese Network 

Siamese network [23] is a straightforward and remarkable construction. As shown in Figure 1, it 

is made up of two identical networks with weights that are shared. It transfers two network inputs to 

new space and obtains the representation of input in new space. The distance measure in new space 

is then adopted to evaluate the similarity of two inputs. Siamese network has been successfully 

adopted in many realms, such as semantic similarity analysis [24], handwriting font recognition [25], 

and visual tracking algorithm [26]. Therefore, it is of great significance in many mission-critical 

applications. 

Figure 1: Siamese network structure 

Network 1 and Network 2 are identical networks. After feature mapping, 𝑎𝑏𝑠(𝑓(𝑋1) − 𝑓(𝑋2)) 
describes the metric distance between two inputs in low-dimensional space. The output of two fully 

connected layers is represented by 𝑓(𝑋1) and 𝑓(𝑋2). 

3. Proposed Methods 

Transmission defects localization network involves three parts (Figure 2 illustrates its structure): 

(a) image pre-processing: key-point localization, image correction, and image de-noising are adopted 

39



 

to improve the quality of images. (b) feature extraction: Based on this understanding, we introduce 

multi-scale features fusion and improved binary cross entropy and focal loss function, which improve 

the performance of network for various and reduce intra-class spacing. (c) model application: A 

model application system is applied in transmission valve component production and assembly 

process. 

3.1. Image Preprocessing 

The complicated environment of production workshop has an impact on image quality. To reduce 

position offset between different images, in this letter, PLC linkage and lifting positioning approach 

is applied. Meanwhile, because of high resolution of industrial cameras, while areas required to detect 

transmission valve components take up only a small amount of overall image region. 

 

Figure 2: The application architecture of proposed network 

Hence, we use overlapping moving crop picture approach and feed cropped small images into 

network as input. To lessen negative influence of metal components in image, we apply background 

interference and metal reflection removal methods (as shown in Figure 3). 

 

Figure 3: The effect of image reflection and background noise removal 

3.2. Feature Extraction 

Following images preprocessing, we improved backbone network and loss function of Siamese 

network. In transmission valve component assembly process, valve components are too tiny. 

Properties of parts such as marbles and springs are virtually similar except for size, making 

differentiation difficult. To address those issues, multi-scale features fusion and improved loss 

function are proposed to further performance of network. 
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3.2.1. Multi-scale Features Fusion 

In order to focus on small objects while reducing redundant shallow feature information in 

background, we design a multi-attention mechanism in shallow feature map. Its fundamental idea is 

to gain smaller features utilizing high resolution of shallow feature maps. Visual attention mechanism 

allows focusing on a portion of image rather of seeing entire region. However, due to small, severe 

reflection, and sparse properties characteristics of parts, more attention should be paid to 

characteristics of a specific section of image throughout transmission valve component assembly 

process. Therefore, multi-attention mechanism is included specifically after shallow features 1 and 2 

to increase attention to small features in image (Figure 2 illustrate its structure).  

This paper contends that there are two key causes for poor performance of transmission defects 

localization model: (a) a lack of context information to gain tiny features; (b) characteristics of 

transmission valve components are taken from shallow features that lack semantic information. Hence, 

features fusion is specially added to network to improve it. The context features of this network are 

derived from second and third convolutional layers, however sizes of convolutional layers vary. 

Accordingly, deconvolution is utilized in feature map to match same size with target feature map. At 

the same time, batch normalization is used to ensure that feature values of different layers have same 

scale. 

3.2.2. Loss Function 

To reduce intra-class spacing by similar transmission valve part samples, an improved binary cross 

entropy and focal loss function is proposed. Total loss is a weighted sum of binary cross entropy loss 

and focal loss. It for each image is defined as: 

𝐿(𝑓(𝑋1) − 𝑓(𝑋2)) = 𝑎 ∗ 𝐵𝐶𝐸(𝑓(𝑋1) − 𝑓(𝑋2)) + (1 − 𝑎) ∗ 𝑓𝑜𝑐𝑎𝑙(𝑓(𝑋1) − 𝑓(𝑋2))            (1) 

where 𝑓(𝑋1) − 𝑓(𝑋2) is input, 𝐵𝐶𝐸() and 𝑓𝑜𝑐𝑎𝑙() represent binary cross entropy loss and focal 

loss, separately. 𝑎 is a hyper-parameter. 

Binary cross entropy loss is defined as: 

𝐵𝐶𝐸(𝑋) = −∑ 𝑞𝑖log⁡(𝑞𝑖̂)𝑛
𝑖=1 + (1 − 𝑞𝑖)𝑙𝑜𝑔(1 − 𝑞𝑖̂)            (2) 

where 𝑋  is input of transmission assembly dataset. 𝑞𝑖  and 𝑞𝑖̂  are values of true probability 

distribution and anticipated probability distribution, respectively. 

Focal loss is defined as: 

𝑓𝑜𝑐𝑎𝑙(𝑋) = −𝑏(1 − 𝑞)𝑐 ∗ 𝑋𝑙𝑜𝑔(𝑞) − (1 − 𝑏)𝑞𝑐 ∗ (1 − X)log⁡(1 − q)            (3) 

where 𝑏 and 𝑐 are hyper parameters. 

3.2.3. Model Application 

We design a model application system in transmission valve component production and assembly 

process. A visual demonstration platform is created using python-GUI programming and OpenCV 

interface. It allows for the visualization of anti-error detection during transmission valve component 

construction process, as well as repair and testing of algorithm. An intelligent transmission valve 

component assembly industrial computer module is deployed based on a fixed station in actual 

production workshop of factory. It realizes off-line real-time anti-error detection in the transmission 

valve component assembly process, allowing workers to check assembly errors and ensure practical 

application of factory workshop production. 
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4. Experiments 

4.1. Experiment Settings 

4.1.1. Transmission Assembly Dataset 

Extensive experiments are being conducted on transmission assembly dataset. It is from Luzhou 

Rongda Intelligent Transmission Co. LTD. Images of transmission assembly dataset have two types: 

‘Wrong assembly’ and ‘Correct assembly’. Then, the size of input images is 128ⅹ128. As a training 

set, 20,000 images are chosen at random. Meanwhile, 850 images are chosen as testing set at random. 

4.1.2. Training Settings 

These experiments use the PyTorch framework and are trained on a GPU GTX-2060. On GPU, 

each batch contains 2 images. 300 epochs are adopted to experiments. At the same time, batch size is 

16. For batches, the learning rate is 0.01 and weight decays to 0.0005. 

4.1.3. Evaluation Metrics 

In those experiments, in order to explore effective transmission defect localization network in this 

case. Two indicators are adopted: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 [27]. The higher 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1 −
𝑠𝑐𝑜𝑟𝑒, the better method. 

4.2. Ablation Study 

4.2.1. Impact of Hyper Parameters in Loss 

We conduct ablation experiment with assessment metrics to determine the hyper parameters in 

loss function. The result of ablation experiment is depicted in Figure 4. According to result, the best 

value for hyper-parameter $a$ in loss function is 0.30. 

 

Figure 4: Comparsion on 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 under different values of hyper parameters 𝑎 

4.2.2. Impact of Training Epoch 

We compare training epochs on transmission assembly dataset to examine the effect of training 

epochs on use of transmission defects localization network. The association between 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 and transmission defects localization network training epochs is depicted in Figure 5. 

The number of our network training epochs is given on the X-axis. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 are 
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described on the Y-axis. 

 

Figure 5: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 are in connection with respect to training epochs 

As seen in Figure 5, experimental outcome of our model has an overall ascending and then 

diminishing pattern as the number of transmission defects localization network training epochs 

increased. Furthermore, when training epoch exceeds 300, the performance of transmission defects 

localization network is excellent. Hence, we set training epochs of transmission defects localization 

network as 300. 

4.3. Comparisons 

4.3.1. Comparisons with Popular Approaches 

To explore the performance of our network, we also compare proposed model with some state-of-

the-arts approaches on transmission assembly dataset. Indicators are used to assess the performance 

of all methods on transmission assembly dataset. We compare our method to common approaches 

such as perceptual hashing, hamming distance, cosine distance, KNN [28], VarifocalNet [29], and 

DETR [30] (as shown in Figure 6). Based on results, our approach outperforms previous comparison 

methods for both indicators 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒. 

 

Figure 6: Comparison between our network and state-of-the-arts on transmission assembly dataset 

Meanwhile, as shown in Figure 7, our model is integrated into station management system, and an 
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application demonstration is carried out successfully. The experiments demonstrate that our method 

can significantly improve the performance of assembly error detection during manual assembly of 

transmission valve components. 

 

Figure 7: The operation interface of station management system 

5. Conclusions 

In this paper, we mainly focused on localizing transmission assembly defects. We provided an 

effective transmission defects localization network which can be evaluated similarity of transmission 

valve components. Firstly, a depth multi-scale features fusion network was established. Then, we 

designed improved binary cross entropy and focal loss and this model was trained by this loss function. 

We more thoroughly examined the impact of the features fusion method in the ablation investigation. 

We also looked test effects under different models training in order to determine the impact of various 

models on localization wrong assembly outcomes. We conduct experiments on transmission 

assembly dataset, which verify and explain the effectiveness of our approach. We hope that our work 

can provide a new angle of error proofing detection, to facilitate the quality of transmission 

component assembly in practice. 
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