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Abstract: It is examined a very simple, geometrically closed configuration concerning 

transport systems. The problem analyzed is a multi-objective optimization problem, in 

which an ever increasing set of visitors is urged to visit and move from a given set of sites 

on a closed path. An essentially kinematic approach is developed and the performance 

evaluation is obtained by means of a combinations of variables. It is also examined a 

particular realization in which one makes use of 𝑪𝟎-functions instead of discrete variables, 

in the spirit of classical mathematical physics. Some features of the model show relevant 

differences with others concerned with traffic and transport problems, for the presence of 

Diophantine integral evolution equations in place of statistical and/or numerical complex 

evaluation methods. This work is the first part of a more thorough discussion on dynamical 

equations in transport systems, including simulations and optimization schemes. 

1. Introduction 

As universally acknowledged, big and small cities, metropolitan areas and little urban 

agglomerations all are besieged by growing patterns of traffic congestion[1]. In very succinct words 

the problem is strictly related and overwhelmingly caused[2] by excessive car dependency, 

resulting in fact in reduced mobility and sustainability almost everywhere[3]. Since the birth of such 

a problem, city administrations ever wasted lot of time and money to solve this and related 

environment problems. The aim is looking for implementing alternative intermodal transportation 

systems[4]. The purpose would be to minimize all sort of negative, congestion effects due to private 

car usage while enhancing possibly economic viability and the quality of life[5]. In such a general 

scenario cities governments recognized urban public transportation system as a fundamental 

element in achieving a well behaved transportation alternative system[6]. The provision of an 

attractive, viable public transit system as a good alternative to private cars is becoming a real fact[7]. 

In the perspective of urban transit systems it is common practice with buses to regulate the 

departures from a limited number of stops, by holding the operators on their stop until the scheduled 

time. More recently, big sets of data and simulations showed[8] nevertheless this control strategy is 

generally unsuccessful in improving the regularity of the service along the line. Such simulations 

showed also drivers adjust their speed based on the actual performance objectives. Good indications, 

on the contrary, come from a control strategy that regulates departures from all stops looking at the 

headways from the preceding bus and the following bus as well[9]. 
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Fundamental steps to have good insight in transit transportation systems include[10] the 

Operational Planning Decomposition Process (OPDP). This is a very general planning process 

adopted in many production systems to generate well integrated and executable procedures able to 

increase production. It consists[11] of four basic activities usually performed in sequence. These are: 

(i) the design of the transmission route, (ii) the prescription of the timetable, (iii) the scheduling of 

the conveyors and (iv) the crew preparation. Important progress and innovation in the field of 

OPDP was the introduction of automated counting electronic devices and control systems. These 

are useful to quantify the additional time and costs due to traffic congestion and make sudden 

improvements during the service itself. The chance of adopting automatic passenger counter (APC) 

systems in the Operational Process turns out to be a very promising solution. In recent years they 

have been implemented in public transit systems in order to check bus occupancy, location, travel 

time and so on[9]. Such kind of information is important for a lot of applications which include 

performance evaluation, service planning, safety improvements and so on. 

However it is not so easy to implement APC systems on any sort of transport system. In some 

conditions or experimental situations it is hard to apply online control systems or just continuously 

online. For instance it may be possible to send a control signal only at certain fixed times. In 

addition, in other situations it is useful to recourse to the large variety of physical effects caused by 

the passage of a vehicle on a route. This technique gives rise to a correspondingly great variety of 

sensors and recording techniques[12] which are currently adopted in any experimental set up. 

In this paper the transport systems subject has been examined considering a very simple 

configuration. This configuration, however, seems to be easily applicable and extendible to many, 

more complex and realistic situations, so that it looks as a scheleton configuration. In this model the 

adoption of APC is quite limited in time and it takes a lower importance. 

The structure of the problem presented here is analyzed from a theoretical point of view, i.e. 

without the recourse to known experimental data. This choice is essentially given by the 

mathematical relevance, if any, of the problem shown, before than physical applications. A 

particularly simple case has been anycase proposed and examined thoroughly. Concerning the APC 

control, we introduced a simplified version of Control System (CS), acting on the transport system 

only "as the whole", that is "as it were a rigid structure" in which the relative distances between 

conveyors remain unchanged. The effect of this Control System is indeed to modify the speed of all 

the conveyors at regular time intervals, leaving the distances between them on average unaltered. 

After the present introduction, in section 2 we present the specific situation we want to analyze, 

together with some questions associated to the time evolution and it is proposed a kind of solutions. 

Then in section 3 we discuss the details of the conceptual scheme of the proposed solution and the 

entire realization. Finally, in section 4 it is exhibited a particular solution obtained in the special 

configuration given by treating the fundamental quantities under consideration like sets of equally 

spaced solitons. In the concluding section 5 the main suggestions coming from this work and 

possible extensions are exposed. 

2. Model description 

It is generally known that traffic transport systems are very complex dynamical structures, whose 

construction and evolution are driven by lot of variables and critical parameters of very different 

species and nature. In quite general terms, this evolution can be grossly described in analytical 

terms by means of a generally unknown function[13]:  

𝑦 = 𝑓 ($, 𝑇, 𝐸, 𝑀, 𝐴)                                                                            (1) 

in which the symbol $generically indicates costs to be incurred, 𝑇 represents paths to be covered, 

𝐸 concerns energy altogether consumed, 𝑀 refers to the amount of mobility required and 𝐴 takes in 
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consideration the amount of accessibility. Here𝑦 stems for the best of performance of the system in 

terms of an appropriately defined measurable quantity whereas 𝑓 is a suggestion for a viable search 

for the best of 𝑦. Here we will concentrate exclusively on the components𝑇 and 𝑀 of the previous 

"generalized function" 𝑦 , assuming by hypothesis a factorization of 𝑓  between different 

contributions; then neglecting questions related to $, 𝐸 and 𝐴. 

Then we start considering a simply connected path 𝐶𝜁 in a closed region of 𝑹𝟐, what we call a 

circuit in 𝑹𝟐 . The path 𝐶𝜁  is designed to connect four strategic points {𝐴, 𝐵, 𝐶, 𝐷}∈𝑹𝟐 .The 

connection is operated by a Transport System consisting in a set of "conveyors". The motion of the 

conveyors is only restricted to the circuit𝐶𝜁. The strategic point 𝐴 plays a special role because it 

represents the unique starting and arriving point in the circuit. 

Together with the conveyors we suppose the existence of a set of "conveyed objects". We can 

see them like visitors of the strategic points. Visitors also are allowed to move only through 𝐶𝜁. 

The preferred mean of transport of these objects is by conveyors. Nevertheless, if it happens 

conveyors are missing for a given time, visitors are able to move by themselves. In this case we 

interpret such a behavior as very similar to drift diffusion from point-like sources. The 

interpretation of this motion spontaneously issued in terms of diffusion arises from the alleged 

ignorance of the "objects" concerning the right direction they must take in order to arrive to the next 

strategic point. Such an ignorance contributes, indeed, to give the incoming motion some chaotic 

behavior, especially on the starting direction. This looks formally analogous to classical random 

walk model. Most in particular we believe the sort of "procession" so arising is better represented 

by means of a drift - diffusion model than a particle - or thermal diffusion model. The setting 

presented here shows indeed a structure partly probabilistic but also partly deterministic.  

The situation is then not a good example of a completely stochastic dynamic systems. The 

deterministic aspect of the motion arises because each visitor feels in itself from the beginning an 

intrinsic, nearly constant and uniform need (i.e. "a force") to move at regular times in a well defined 

direction. This hints to describe it as a drift-diffusion instead of thermal- or concentration- or 

pressure- diffusion. 

Evidently the specific application of our circuit 𝐶𝜁 with associated "transported objects" can vary 

greatly, ranging from guided visits to museums or exhibitions to vaporetto service in lagoon areas 

and even in tourist information services on the internet. Consequently and depending on this choice, 

the nature of the corresponding Transport System elements will also be different. 

In consideration of possible applications to urban cities, it seems useful hereafter to rename the 

conveyors and the transported objects calling them "the buses", {𝑏𝑗}, 𝑗 =  1, . . , 𝑁𝐵  and " the 

pedestrians", {𝑝𝑖}, 𝑖 =  1, . . , 𝑁𝑃 . Sometimes the pedestrians will be called "the visitors", with the 

same meaning. As we said, pedestrians hope to move around𝐶𝜁 by using buses;  but due to time 

reasons, if needed, pedestrians are able to move on 𝐶𝜁  also without buses, i.e. "by feet". It is 

mandatory for buses and pedestrians to follow the order 𝐴 − 𝐵 − 𝐶 − 𝐷 while they are moving 

around 𝐶𝜁 . It is also forbidden to the buses and pedestrians to reach any point not consecutive 

another one unless reaching first all the intermediate ones. Exceptions to this rule will be described 

in the following. 

Buses move with constant speed 𝑉 for each lap around 𝐶𝜁. At the beginning of the next lap the 

speed can be modified by the Control System, depending on the performance of the transport 

system itself. The graph of 𝑉 (𝑡) would then be similar to a step function. We also suppose the 

existence of a diffeomorphic map between 𝐶0-regular representations of 𝐶𝜁 in arbitrary coordinates 

and the ordinary circumference𝑪′ ∈ 𝑹𝟐. 

This assumption allows us to simplify the description of the "true" motion over𝐶𝜁 with a circular 
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one.Indeed, if 𝑉 (𝑡)is sufficiently constant in time we may describe the motion in terms of an 

approximately uniform circular motion over𝑪′ , done with constant angular speed Ω . The only 

exception to a perfectly uniform circular motion would come by the presence of the four stops 

required at points {𝐴, 𝐵, 𝐶, 𝐷}. In other words we translate the motion on 𝐶𝜁 to an approximately 

uniform circular one on the unitary circumference having four strategic points, {𝐴, 𝐵, 𝐶, 𝐷}, located 

at four special angular coordinates 𝜃𝑖 , 𝑖 =  𝐴, 𝐵, 𝐶, 𝐷. 
The meaning of "visiting a point" for a pedestrian  𝑝𝑗 requires an explanation. We say that  𝑝𝑗 

visits a point 𝑃𝑖 if 𝑝𝑗 gets off the bus 𝑏𝑘 he were occupying when 𝑏𝑘 stopped at 𝑃𝑖. This is different 

from "passing to point 𝑃𝑗", which doesn’t imply "getting off" the bus, but only arriving at 𝑃𝑖 . Once 

reached a point, the time required in order to complete the visit is 𝑡𝑉 = 𝑐𝑜𝑛𝑠𝑡 . 
The pedestrians purpose is to start from point 𝐴 and return there after visiting in sequence the 

greatest possible number of points 𝐵, 𝐶, 𝐷 in the lowest possible time. The goal for the Transport 

System consists in collecting the greatest possible number of pedestrians to every round trip with a 

given set of buses. The initial time of the process is𝑡0. The number of pedestrians conveyed by 

buses at time 𝑡 and position 𝜃 on 𝐶𝜁 is 𝑄(𝜃, 𝑡) so that the maximum bus capacity is 𝑄𝑀≡𝑄(𝜃, 𝑡0) 

assuming the buses are completely empty at the beginning. 

As quoted above, point 𝐴 plays a special role, since it is the source and the well of the Transport 

System. Periodically, with a given frequency 𝑓𝐴, a certain number of pedestrians "is created" in 𝐴 or, 

equivalently, "arrives there" from the exterior of 𝐶𝜁 . This choice allows us to introduce an 

appropriate "placement function" 𝜑𝑃(𝑡)of the pedestrians in A. We will describe a possible  𝜑𝑃(𝑡)in 

section 4. 

Suddenly after a time 𝑡𝑉 ,  which is the time required to each pedestrian “to visit” a point 𝑃𝑖 , 
pedestrians are asked to move immediately from 𝑃𝑖 . It is necessary they move toward the next point  

𝑃𝑖+1 in a short time 𝑡𝜖. In particular they must necessarily leave point 𝑃𝑖 in a given short time 𝑡𝜖. If 

in the time interval (𝑡𝑉 , 𝑡𝑉 + 𝑡𝜖) no buses will come to 𝑃𝑖 , the aforementioned visitors will move 

by themselves. In this sense the probability 𝜋(𝑡 − 𝑡𝑉)  they leave 𝑃𝑖 is 

{𝜋(𝑡 − 𝑡𝑉) = 0, ∀𝑡 ≤ 𝑡𝑉}   ∪   {𝜋(𝑡 − 𝑡𝑉) = 1, ∀𝑡 ≥ 𝑡𝑉 +  𝑡𝜖} .                        (2) 

This kind of diffusion is in competition with the Transport System. It is growing in time, it starts 

at 𝑡𝑉 and becomes fully efficient at  𝑡𝑉+𝑡𝜖. This diffusion will thus be driven by the probability 

𝜋(𝑡 − 𝑡𝑉).  In what follows we will adopt the simplified description: 

{𝜋(𝑡 − 𝑡𝑉) = 1, 𝑖𝑓𝑓 𝑡 = 𝑡𝑉 + 𝑡𝜖}   ∪      {𝜋(𝑡 − 𝑡𝑉) = 0, ∀𝑡 ≠ 𝑡𝑉 + 𝑡𝜖} .          (3) 

We will moreover concentrate on a transport process having time duration of one working day  

 𝑇𝑑, i.e. about8 − 10 hours . We may thus write  𝑡0 ≤ 𝑡 ≤  𝑇𝑑 . 

Located along the circuit, in points identified by the angular coordinate 𝜃𝑖(𝑡0)a certain number   

𝑖 = 1, … , 𝑁𝐵of buses is ready to move. At the start buses are empty and in charge of picking up 

visitors to carry them along the circuit 𝐶𝜁. When a bus arrives at a stop 𝑃𝑖 , some visitors will first 

get off the bus, suddenly other visitors will get on. The order of these operations indicates that the 

descent from the bus takes precedence over the ascent: this order will become important under 

certain conditions. 

While 𝑁𝐵is constant in our model, the average number 𝑁𝑃(t) of the pedestrians conveyed at time 

𝑡depends on the function𝜑𝑃(𝑡) computed in [0, 𝑡]. Unless 𝜑𝑃(𝑡)is a function with small amplitude 

and little frequency, it is to suppose 𝑁𝑃 (t)will not decrease in the course of the day. This fact 

requires continuous adjustments on the buses frequency and speed. As previously said, the speed of 

the buses 𝑉(𝑡) is then externally regulated at equal time intervals, 𝑇, by the CS. This regulation 

operates in the same time on every bus present in𝐶𝜁. Because we describe the process in terms of a 
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circular uniform motion it seems safe to introduce the angular speed 𝛺(𝑡) instead of the linear one 

𝑉(𝑡). 

The goal of this “sort of game” in the following will be to take in balance a variable set of 

visitors leaving A at time t with the number of visitors coming back to A later on by means of the 

lowest possible number 𝑁𝐵 of buses and the best initial positioning of them. Other possible 

objectives may be trying to do the same also at point B and/or C and/or D. 

3. Model development 

As previously quoted, lot of methods have been developed for bus arrival time predictions. 

Among them let us just recall time series, artificial neural networks, Kalman filtering, digital 

simulation and Monte Carlo analysis. In these studies the recourse to discrete time sequences is the 

rule and generally successfully. Although we also face with discrete objects here, whenever 

possible we will try to describe the evolution process by means of continuous 𝐶1 (𝐓1)  functions, 

where 𝑻1 is the 1-dim torus on 𝑹𝟐 . So let us introduce the shortand notation 𝑁(𝜃, 𝑡)  for the 

pedestrian occupation function ∑ (𝑁(𝜃, 𝑡) 𝛿(𝜃 −  𝜃𝑖  𝑖 )), where the 𝛿(𝑥) is the Dirac’s distribution 

and 𝑖 = 𝐴, 𝐵, 𝐶, 𝐷. 
Let us also remember we are assuming here the point of view of the Transport System benefit. 

In other words, the function 𝑁(𝜃, 𝑡)  of the pedestrians lying in 𝑃(𝜃, 𝑡)  will be essentially 

different from zero only at point 𝜃 = 𝜃𝑖. Quite generally we write 

N(θ, t2) = N(θ, t1) + 

   +∫ [∆N(θ. t′) − ∆∗N(θ, t′)] dt′ −  ∆ND(ϑ, t1, t2) + ∆∗ND(θ
t2

t1
, t1,t2)                  (4) 

The right hand side of eq.(4) corresponds to the sum of the initial number of pedestrians at 𝑡 =
𝑡1plus contributions. The term ∆𝑁 corresponds to the number of pedestrians who arrive by bus at 

𝑃(𝜃) at time 𝑡′and visit 𝑃(𝜃); the term ∆∗𝑁gives the number of pedestrians leaving by bus  𝑃(𝜃)at 

the time 𝑡′after visiting it; the term ∆𝑁𝐷  represents the number of pedestrians who leave P by 

diffusion between 𝑡1 and 𝑡2 and the term ∆∗ 𝑁𝐷 gives the number of pedestrians arriving at P by 

diffusion between 𝑡1 and 𝑡2. 

As we said, diffusion from 𝑃𝑖 arises when pedestrians urged to move does not match any bus in a 

short time. Thus pedestrians start to move with a speed 𝜔𝑃 ≪  Ω which is approximately constant. 

We interpret 𝜔𝑃as the mean to realize particle diffusionand the whole phenomenon analogous to 

brownian motion or 1-dim drift propagation[14]. Pedestrians start to diffuse and follow the stream, 

directed to𝑃𝑗, , j >i. The primary goal of them is to reach point 𝑃𝑖+1. But this may happen only 

if𝑃𝑖+1 is found to be not completely occupied. The spatial concentration of these pedestrians, which 

corresponds to our Δ𝑁𝐷, is described in first approximation by Fick’s theory. With the recourse to 

the familiar Propagator’s expression for delta - shaped sources we obtain 

Δ𝑁𝐷(𝜃, 𝑡1, 𝑡2 ) =  ∫ 𝑑𝜃′ ∫ 𝑑𝑡′ 𝐴(𝜃)

√4𝛼2𝜋𝑡′  
𝑒−(𝜃′−𝜃)2/(4𝛼2𝑡′)                        (5)

𝑡2

𝑡1

2𝜋

𝜃
 

An analogous result holds for the ∆∗𝑁𝐷 term, namely 

               ∆∗𝑁𝐷(𝜃, 𝑡1, 𝑡2 ) =  ∫ 𝑑𝜃′ ∫ 𝑑𝑡′ 𝐴(𝜃′)

√4𝛼2𝜋𝑡′  
𝑒−(𝜃′−𝜃)2/(4𝛼2𝑡′)                         (6)

𝑡2

𝑡1

𝜃

0
 

where 𝐴(𝜃) is the "initial concentration" of pedestrians located in P (𝜃)  at 𝑡 = 𝑡1 and  𝐷(𝑡′) ≡
 𝛼2𝑡′ is a measure of average dispersion (or standard deviation) of diffusion at time 𝑡′. We will 

come back to that later on. Concerning the effect of diffusion we notice that the flux intensity is 

limited, being proportional to ∆𝑁𝐷 times the pedestrians speed, compared to the flux driven by bus, 
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which is proportional to ∆N times Ω; nevertheless it is not completely negligible because diffusion 

starts much more frequently with respect to the average frequency of the bus stops. 

An important observation concerning eq.(4) is that the 𝜃-coordinate appearing in the ∆N and 

∆∗𝑁 terms is not an independent variable, because it is related to the motion of the conveyors. In 

fact visitors who arrive at 𝑃(𝜃𝑖) at time t by means of buses have been necessarily at 𝑃(𝜃𝑖−1) at the 

earlier time t –  (𝜃𝑖 − 𝜃𝑖−1)/Ω . In other words the number of pedestrians ∆N (𝜃𝑖 , 𝑡) is strictly 

connected to the number of pedestrians  ∆∗𝑁(𝜃𝑖−1, 𝑡 − (𝜃𝑖 − 𝜃𝑖−1) Ω⁄ ) and we can write 

𝜃(𝑡2) =  𝜃(𝑡1) + Ω(𝑡1)(𝑡2 − 𝑡1)                                                             (7) 

which holds for 𝑡2 − 𝑡1 smaller than one lap time T. The buses’ capacity 𝑄(𝜃(𝑡), 𝑡), i.e. the number 

of seats free at time t and position 𝜃also varies with time and stops. In this case the functional 

dependence 𝜃 = 𝜃(𝑡)  s absolutely necessary to describe the buses position. Starting from an 

assigned  𝑄(𝜃0, 𝑡0),  its evolution is regulated by the sum of the pedestrians continuously getting off 

and on at each bus stop. As quoted above we defined  𝑄𝑀 the maximum capacity of each bus, so 

that we can see  𝑄(𝜃0, 𝑡0) as the sum of a set of Dirac’s delta distributions centered at the buses 

starting points and having amplitude 𝑄𝑀. 

It is therefore 

𝑄(𝜃(𝑡2), 𝑡2) =  𝑄(𝜃(𝑡1), 𝑡1) −  ∫ [∆𝑁(𝜃(𝑡′), 𝑡′) − ∆∗𝑁(𝜃(𝑡′), 𝑡ì)]𝑑𝑡′       (8)
𝑡2

𝑡1

 

The Transport System path is therefore a circular almost uniform collective motion of buses with 

short stops. Although stops occur at different times for different buses thus inducing modifications 

on the geometric structure of the system, on average, namely after a complete lap of the circuit, the 

structure will maintain its initial shape. The hypothesis that the visit times at strategic points remain 

exactly constant and the same everywhere hints to forecast a constant time period T between 

subsequent bus passes from the same points. This is good from the travelers’ point of view but also 

for the conveyors. So we can speak of a 1-lap-averaged angular speed  < Ω >  which is defined as 

< 𝛺 >=  
2𝜋

𝑇
                                                                                     (9) 

where we put 

𝑇 =  
𝜃𝐴 − 𝜃0 

Ω
+  𝛿𝑡𝐴 +

𝜃𝐵 −  𝜃𝐴

Ω
+  𝛿𝑡𝐵 + 

𝜃𝐶 −  𝜃𝐵

Ω
+  𝛿𝑡𝐶 +  

𝜃𝐷 −  𝜃𝐶

Ω
+  𝛿𝑡𝐷

+
𝜃0 + 2𝜋 −  𝜃𝐷

Ω
  .                                                                                                               (10) 

Here 𝛿𝑡𝑖 , 𝑖 = 1, … ,4  represents the longest, among all the buses in service, waiting time 

required by the visitors to get off or get on their bus at the stop  𝑃𝑖 . Buses are supposed to be all the 

same capacity. If ϵ is the time required for a single pedestrian to leave the bus or remain on its place, 

let us set 

𝛿𝑡𝑖 =  𝜀(∆∎𝑁𝑖 + ∆∗∎𝑁𝑖) (1 +  𝛾
𝑄𝑀−𝑄𝑖

𝑄𝑀
) ,    𝑖 =1,…,4 ,                                      (11) 

with 

∆∎𝑁𝑖 = 𝑚𝑎𝑥{∆𝑁𝑘(𝑡𝑖)} ,   𝑘 = 1, … , 𝑁𝐵     and analogously for  ∆∗∎𝑁𝑖               (12) 

In eq.(11) we inserted a slight “time increase” factor  1 + 𝛾 (𝑄𝑀 − 𝑄𝑖) 𝑄𝑀⁄   into  the bare scaling 

of 𝜀  by the factors  ∆∎𝑁𝑖 ,  ∆
∗∎𝑁𝑖 . This effect in our opinion is induced by the greater or lesser 
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crowding of the means of tran sport. Clearly eq.(10)  holds only if 𝑄𝑖 ≤ 𝑄𝑀 . 
Collecting together eqs.(10), (11), (12), the  < Ω >  is related to the effective  Ω by: 

< 𝛺 > =  
2𝜋

2𝜋

Ω
+  𝜀 ∑ (∆∎𝑁𝑗 +   ∆∗∎𝑁𝑗)𝑗 (1 + 𝛾 (𝑄𝑀 − 𝑄𝑗) 𝑄𝑀⁄ )

 ,                         (13) 

with  𝑗 = 𝐴, … , 𝐷.   Notice however that in general  𝑇 = 𝑇(𝑡). 
In the next lap, whose time duration is by definition equal to T, the sites occupation numbers 𝑁𝑖 

will now become 𝑁𝑖 + 𝛿𝑁𝑖 so as the corresponding bus capacities𝑄𝑖  ≡ 𝑄(𝜃𝑖) will change to 𝑄𝑖 +
𝛿𝑄𝑖 . Hence we require to modify the angular speed Ω𝑡 in the next lap to  Ω𝑡+𝑇 , 

  Ω𝑡+𝑇 =  Ω𝑡 +  𝛿Ω𝑡  ≡  Ω′                                                           (14) 

under the condition 
2𝜋

Ω′ +  𝜖 ∑ (𝑗 ∆∎𝑁𝑗
′ + ∆∗∎𝑁𝑗

′ )(1 + 𝛾
𝑄𝑀−𝑄𝑗

𝑄𝑀
) = 

2𝜋

Ω
+ 𝜖 ∑ (𝑗 ∆∎𝑁𝑗 + ∆∗∎𝑁𝑗)(1 + 𝛾

𝑄𝑀−𝑄𝑗

𝑄𝑀
)     

       ∙(1+𝛾
𝑄𝑀−𝑄𝑗

𝑄𝑀
)  ,           (15) 

where we defined Δ𝑁𝑗
′ = Δ𝑁𝑗(𝑡 + 𝑇) and Δ∗𝑁𝑗

′ = Δ∗𝑁𝑗(𝑡 + 𝑇) . In this way we obtain a 

requirement on < Ω >  such that the transport speed does not get worse while going from t  to  t+T,  

and T remains constant.  All that gives 

𝛿Ω𝑡 =  Ω𝑡  
𝛿𝑅

1− 𝛿𝑅
                                                                         (16) 

having  put 

𝛿𝑅 ≡ 𝑅(𝑡) −  𝑅(𝑡 − 𝑇)                                                                 (17) 

and where we introduced the ratio 

𝑅(𝑡) =  
𝜖Ω

2𝜋
∑  (𝑗 Δ∎𝑁𝑗  + Δ∗∎𝑁𝑗) (1 + 𝛾

𝑄𝑀 − 𝑄𝑗

𝑄𝑀
 )                                      (18) 

with 𝑡 ∈ [(𝑘 − 1)𝑇 , 𝑘𝑇]  and  𝑘 ∈ 𝑵. 
The  𝑅(𝑡) is in fact the ratio between the fraction of the time period T when buses stop at     

𝑃(𝜃𝑖), i = 1, ...,4, and the fraction in which buses move around 𝐶𝜁. If this ratio does not change 

between t − T and t , Ω𝑡 does not change in going from t to  t + T.  We are also supposing ϵΩ small 

enough to have δR ≪ 1; this is so because by assumption the motion is nearly circular uniform with 

short bus stops. The structure of eq.(16) is such that to enhance the positive δR more than the 

negative ones. In this way, it is encouraged a situation in which the overall stop time at bus stops 

during the laps is getting smaller, while the opposite situation tends to stabilize. 

Visitor stopover at strategic points takes place according to the modalities  prescribed in the ∆N, 

Δ∗𝑁, Δ𝑁𝐷 and Δ∗𝑁𝐷 definitions. To this aim we need to distinguish between 𝑁^(𝜃, 𝑡),  which is the 

number of pedestrians ready to move from 𝜃at time t, N(𝜃, t) that is the number of pedestrians 

present in 𝜃 at time t and 𝑁∗(𝜃, 𝑡) namely the number of pedestrians actually transferred with bus 

from 𝜃 at time t. The time periodic structure of the process, in which we put T unchanged all the 

day suggests the adoption of the variable 

𝑡(𝑘) ≡ 𝑡 − [𝑡 𝑇⁄ ]𝑇 = 𝑡 − 𝑘𝑇                                                              (19) 

with 𝑘 ≡ [𝑡 𝑇⁄ ] ∈ 𝑵, instead of the simple  𝑡 ∈ 𝑹.  Il is then 

0 ≤  𝑡(𝑘)  ≤ 𝑇 ,      𝑘 ∈ 𝑵   .                                                                 (20) 

Under the hypothesis   𝑡𝑉 < 𝑇 we thus obtain 
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𝑁^(𝜃, 𝑡(𝑘)) = ∆𝑁(𝜃, 𝑡(𝑘) − 𝑡𝑉) + ∆𝑁𝐷(𝜃, 𝑡(𝑘) − 𝑡𝑉) =                             (21) 

=  ∫ 𝑁∗ (𝜃′
𝜃

0

, t(k) −
θ −  θ′

Ωk
−  tV )  𝑑θ′                                                        (22) 

𝑁∗(𝜃, 𝑡(𝑘)) = 𝑚𝑖𝑛 {𝑁^(𝜃, 𝑡(𝑘)) ,   𝑄(𝜃0, 𝑡(𝑘) −
𝜃 − 𝜃0

Ωk
 )  }                             (23) 

where  𝜃′ < 𝜃,𝑡(𝑘) ∈  [0, 𝑇),   Ωk ≡ Ωt(k)
 . 

In eq.(23) we underlined the need of an adequate matching between the number of pedestrians 

ready to move, the number of seats free and the circular motion of the "seat carriers". 

Two additional elements we included in our development. The first one is the fact that in the 

course of the day visitors moving from A may choose to skip visit B and go directly to visit C if the 

time at their disposal until the end of the working day 𝑇𝐷 is poor. As the hours go on, this trend will 

extend to points C and D too. As a consequence the preferred direction starting from A will change 

in the course of the day. Approximately this will result in a continuous slight change of visitors’ 

distribution along the destinations. Quite similar considerations hold even for the arrivals to C and 

D starting from B and finally from C. with the passing of the hours. The second element is the fact 

that sites A, B, C, D do not have infinite capacity. If a site is getting full of visitors less people will 

be interested to visit it in their immediate future. In fact if a site 𝑃(𝜃𝑖)is full at time t, visiting it 

becomes forbidden until is 𝑁(𝜃𝑖 , 𝑡) = 𝐶𝑖,  if we defined 𝐶𝑖 the capacity of the sites A, ..., D. 

Even from a psychological point of view, a pedestrian may privilege to visit sites not completely 

occupied, nor completely empty. The preferred situation would be to find a site just half occupied. 

It is possible to take into account the last two issues simply by introducing ad hoc two 

multiplicative factors. We call them 𝕺𝒊(𝜃, 𝑡) and  𝕱(𝜃, 𝑡). The first one is the probability of moving 

toward 𝜃 starting from 𝜃𝑖 and then can be called the "preferred Destination" function  𝕺𝒊(𝜃, 𝑡). The 

second one is an indication of the "Filling status" of a site 𝜃. In practice both functions 𝕺𝒊(𝜃, 𝑡) and 

𝕱(𝜃, 𝑡) take non zero values only at 𝜃 = 𝜃𝑖. 

These functions, moreover, are two different filters acting on the pedestrians’ destination. As 

such, both  𝕺𝒊(𝜃, 𝑡)and  𝕱(𝜃, 𝑡)  take values ranging from zero to one. In the next section a specific 

realization of them will be exhibited. 

With the inclusion of these additional factors we modify 

𝑁∗ →  𝑁∗𝕺𝒊𝕱                                                                                 (24) 

In the light of all considerations made, we rewrite eq.(4) as 

𝑁(𝜃, 𝑡0 + 𝑘𝑇 ≤ 𝑡 < (𝑘 + 1)𝑇)  ≡ 𝑁(𝜃, 𝑡(𝑘)) = 

= 𝑁(𝜃, 𝑡(𝑘−1)) +  ∫[Δ𝑁𝑘(𝜃, 𝑡′) − Δ∗𝑁𝑘( 𝜃, 𝑡′)]𝑑𝑡′

𝑇

0

−  Δ𝑁𝐷   +  Δ∗𝑁𝐷(𝜃, 𝑡(𝑘))            (25) 

where we defined 

Δ𝑁𝑘(𝜃, 𝑡′) ≡  ∆𝑁(𝜃, 𝑡(𝑘)
′ )                                                                   (26) 

with the additional condition  𝑁(𝜃, 𝑡(−1)
′ ) ≡ 0.  In eq.(25) we still have to substitute in the  ∆ −

 and  ∆∗ −  terms the expressions found in accordante with eqs. (3), (21), (23) and (24). We obtain 

this way 

∆𝑁𝑘(𝜃, 𝑡) =  𝕺𝑘(𝜃, 𝑡)𝕱(𝜃, 𝑡) ∫ 𝑁∗𝑡𝜀

0
(𝜃0 ,   𝑡(𝑘) −  

𝜃− 𝜃0 

Ωk
−  𝑡𝑉 −  𝑡′)  ∙ (1 −  𝜋(𝑡′))𝑑𝑡′,         (27) 
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∆∗𝑁𝑘(𝜃, 𝑡) =   ∫ 𝑁∗(
𝑡𝜀

0
𝜃, 𝑡(𝑘) − 𝑡𝑉 − 𝑡′)(1 −  𝜋(𝑡′)𝑑𝑡′                       (28) 

and correspondingly the eqs. (5), (6)  are now changed to 

                                  ∆𝑁𝑘,𝐷(𝜃, 𝑡) =  ∫ 𝑑𝜃′2𝜋

𝜃
∫ 𝑑𝑡′𝐴(𝑡(𝑘)

𝑇

𝑡0
) 𝑒−(𝜃′−𝜃)2 (4𝛼2𝑡′)⁄                          (29) 

and  

Δ∗𝑁𝑘,𝐷(𝜃, 𝑡) =  ∫ 𝑑𝜃′𝜃

0
∫ 𝑑𝑡′𝐴(𝑡(𝑘)

′𝑇

𝑡0
)                                               (30)  

having put 

𝐴(𝑡(𝑘))  =
𝑚𝑎𝑥{ 0 ,   𝑁(𝜃 ,𝑡(𝑘)− 𝑡𝑉− 𝑡𝜀) − Δ∗𝑁(𝜃 ,   𝑡(𝑘)− 𝑡𝑉− 𝑡𝜀) − 𝑄(𝜃 ,   𝑡(𝑘))}

√4𝛼2𝜋𝑡(𝑘)

                      (31) 

As known the 𝛼 -coefficient appearing in eqs. (29),(30),(31), is the diffusion coefficient or 

diffusivity, introduced in the treatment of thermal diffusion, as well as matter, momentum or 

pressure diffusion. In these cases the α- coefficient is strongly dependent on the local framework in 

which diffusion occurs and gives a measurement of the rapidity of the collective motion. If  𝜔𝑝 is 

exactly constant the diffusivity becomes zero almost everywhere. In our case we observe, in passing, 

how diffusion does not begins at all even in the special situations when 

𝑡𝑉 = 𝑚 (𝜃𝑖 − 𝜃𝑖−1) Ω𝑘⁄   ,        𝑖 ∈ 𝑵 (𝟒)⁄  , 𝑚 ∈ 𝑵                                  (32) 

for 𝑡 ∈ (𝑡(𝑘) , 𝑡(𝑘+1)].     

Concerning the diffusion coefficient α, let us consider the Einstein - Smoluchowski equation[15] 

and applications. As we can see from general treatments, 𝛼2 is essentially determined by the 

mobility parameter µof the diffusing medium multiplied by the ratio 𝜌 (𝜕𝜌 𝜕𝑈)⁄⁄ , where ρ is the 

number density of diffusing particles and U il the potential of the "force" that creates the drift 

motion. When the distribution of ρ is described by classical Maxwell - Boltzmann statistics, the 𝛼2 

most general expression reduces to 𝛼2 = −𝜇𝑘𝐵𝑇  where 𝑘𝐵  is the Boltzmann constant, T the 

absolute temperature. This last result shows in dimensional terms how diffusivity is given by the 

product of a mobility parameter times the average energy density for single diffusing particle. In our 

case the mobility parameter is expressed by the speed 𝜔𝑝whereas the average energy per particle is 

constant in first approximation(it may change slightly with time and density). This leads us to write 

𝛼2  ≡ 𝐾𝜔𝑝                                                                           (33) 

The equations (4) and (8) previously discussed and modified under the prescriptions done in 

eqs.(25)-(31), are the required system of integral Fredholm equations with iterative core. We are 

interested in its Diophantine solutions. 

The free parameters we can modify in order to improve the service of this transport system 

reduce essentially to three, i.e. the number of buses employed, the initial angular positioning of 

buses and the angular speed changes. The good quality of the service can be evaluated in the 

aftermath by three parameters stemming after one day activity. They are the ratio 〈𝑃𝐿〉 of the total 

number of pedestrians conveyed with respect to the total length traveled by the buses at work 

(pedestrians conveyed per unit length); the average capacity 〈𝐴𝐶〉 of the buses used (optimal bus 

capacity); the ratio 〈𝐵𝑆〉 of the total number of pedestrians lost by diffusion with the total number 

of pedestrians arrived at point A by bus (best bus synchronization). 

Improving the service means possibly optimize these parameters. They are written as: 

〈𝑃𝐿〉  ≡  ∑ ∫ ∑  Δ𝑁(𝜃𝑘 , 𝑡(𝑖)
′ )𝐷

𝑘=𝐴 𝑑𝑡(𝑖)
′ 𝑁𝐵 ∑ Ω𝑖𝑇

𝑖𝑚
𝑖=0⁄

𝑇

0

𝑖𝑚
𝑖=1                                  (34) 
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〈𝐴𝐶〉  ≡  
1

𝑖𝑚𝑇
∑

1

𝑄𝑀𝑁𝐵

𝑖𝑚

𝑖=1
∫ ∑ 𝑄(

𝐷

𝑘=𝐴

𝑇

0

𝜃𝑘 , 𝑡(𝑖)
′ )  𝑑𝑡(𝑖)

′                                   (35) 

〈𝐵𝑆〉   ≡   ∑ ∫ ∑ ∆𝑁𝐷 (𝐷
𝑘=𝐴

𝑇

0

𝑖𝑚
𝑖=1 𝜃𝑘 , 𝑡(𝑖)

′ )  𝑑𝑡(𝑖)
′ ∫ 𝜑𝑃(𝑡′)𝑑𝑡′𝑇

0
⁄                           (36) 

where  𝑖𝑚 = [𝑡 𝑇⁄ ] ,  and  0 ≤  𝑡(𝑖)
 ′  ≤ 𝑇 . 

At least one other question, among others, still needs to be raised. That is: what happens to a 

visitor who arrives at site D without stopping first at all previous points? Can he repeat the round 

again, to stop at the missing points or not? Answering affirmatively or not will lead to different 

optimization schemes and different problems to be solved.In the next section we will look at one. 

4. A first realization 

Let us now put at work this model and examine the performance in a specific situation. It matter 

of a very simple configuration. We introduce first the following description of the placement 

function 𝜑𝑃(𝑡) , useful for applications. It is the sum of a set of equally spaced "solitons-like" 

profiles (the pedestrians) who arrive continuously to point A at regular time intervals   𝛿𝑡 = 1 𝑓𝑎 .⁄    

It is then 

𝜑𝑃(𝜃, 𝑡) =  ∑ 𝐴0𝑠𝑒𝑐ℎ [𝜖0 (𝜃 − 𝑓𝑎(𝑡 − 𝑡𝑗))]
𝑗𝑀

𝑗=0
𝛿(𝜃 − 𝜃0)                          (37) 

where  𝛿(𝑥), i.e. the Dirac delta distribution, is needed to stop the arrivals at site A . The initial 

distribution of the buses is analogously described, we suppose, by means of a small set of  "soliton-

like" profiles. Buses are spatially distributed at the beginning of the working day and left to move 

subsequently. The spatial structure of the train of buses remains therefore unchanged. 

We write this as 

𝑄(𝜃, 𝑡) =  ∑ 𝑏(𝜃𝑘
𝑁𝐵
𝑘=1 , 𝑡) 𝑞𝑘(𝜃 − Ω𝑡)                                          (38) 

𝑏(𝜃𝑘 , 𝑡) = 𝑏(𝜃𝑘 , 𝑡0) − ∫ [ Δ𝑁(𝜃𝑘(t′), t′) − Δ∗N(𝜃𝑘(t′) , t′) ]𝑑𝑡′                  (39)
𝑡

0
 

𝑞𝑘(𝜃 −  Ω𝑡)  ≡  𝑠𝑒𝑐ℎ[𝜂 (𝜃 −  𝜃𝑘 −  Ω𝑡)]                                           (40) 

A possible realization of the so called  “preferred Destination” functions 𝕺𝒊(𝜃𝑗 , 𝑡)  previously 

introduced with relation (24)  may be given by 

∑ 𝕺𝟏(𝜃𝑗 , 𝑥)𝒋  =  𝕺𝟏(𝜃2 , 𝑥) +  𝕺𝟏(𝜃3 , 𝑥) + 𝕺𝟏(𝜃4 , 𝑥)  = 

     =      
𝑎12 √𝑥

  1 + 𝑏12𝑥
 +  

𝑎13

  1 + 𝑏13 (0.5−𝑥)2  +  
𝑎14√1−𝑥

  1+𝑏14(1−𝑥)
                                      (41) 

∑ 𝕺𝟐(𝜃𝑗 , 𝑥)

𝒋

 =  𝕺𝟐(𝜃3 , 𝑥) +  𝕺𝟏(𝜃4 , 𝑥)  = 

=  
𝑎23 √𝑥

  1 + 𝑏23 𝑥
 + 

𝑎24√1−𝑥

  1+𝑏24(1−𝑥)
                                                             (42) 

𝕺𝟑(𝜃4 , 𝑥)  =   
𝑎34 √𝑥

  1 + 𝑏34 𝑥
                                                                                  (43) 

having set  𝑥 ≡ (𝑡 𝑇𝐷⁄ ) ≤ 1 .  By putting then  𝑖 = 1,2,3,4 ≡ 𝐴, 𝐵, 𝐶, 𝐷  we can obviously write 

𝑗 = 𝑖 + 𝑘 ,       𝑘 = 1,2,3 ,       |𝑗| ≤ 4                                                          (44) 
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Equations (41)-(43)  require a normalization𝑁𝑚 ,such that 

(1 𝑁𝑚⁄ )∑ 𝕺𝒊(𝜃𝑗 , 𝑥) = 1 ,        0 < 𝑥 ≤ 1 ,                 𝑖 = 1,2 .𝑗                         (45) 

In fact, only the function 𝕺𝟑(𝜃4 , 𝑥) can remain less than one, if we are at t  near 𝑇𝐷, because 

visitors at point C may also prefer to stay still and visit it calmly instead of moving. 

With respect to the so called "Filling status" function  𝕱(𝜃𝑖 , 𝑡) we supposed it has the structure: 

𝕱(𝑦𝑖) =
1

2
+ 2𝑦𝑖 − 2𝑦𝑖

2                                                                      (46) 

where  it isdefined  𝑦𝑖 = 𝑁(𝜃𝑖 , 𝑡) 𝐶𝑀⁄  ,  and the capacities of the sites are given by 𝐶𝑖 ≡ 𝐶𝑀 =
220 ,  for  𝑖 = 𝐴, 𝐵, 𝐶, 𝐷. 

The three different contributions to the function ∑ 𝕺𝟏(𝜃𝑗 , 𝑥)𝒋  introduced with the eq.(41)  are 

graphically represented in the Figure 1. 

 

Figure 1: The behavior with respect to the time of the so called "preferred Destination" function 

for pedestrians starting from A and moving, respectively, toward points B, C and D. 

Other necessary considerations include to relate the "time width" 𝜖0 of the single ‘soliton-like’ 

function, to the pedestrians arrival frequency𝑓𝑎 and to evaluate the 𝑡𝑉  and 𝑇𝐷  magnitudes.  To fix 

ideas let us assume a time unit𝑡𝑢 and duration 𝑇𝐷 

1𝑡𝑢 ≡ 5 𝑚𝑖𝑛,                    𝑇𝐷 = 120 𝑡𝑢                                    (47) 

and, consequently, in 𝑡𝑢 units, 

𝑡𝜀 = 2 ,        𝑓𝑎 ≅ 2 ,           𝜂 = 4 ,            𝑡𝑉 = 12                                  (48) 

As for as the 𝛿𝑡𝑖  ‘crowding-induced’ time delay introduced in eq.(11) and other parameters, 

occurring in the model, we will assume here the following values 

𝜀 ≈ 0.01 ,        𝛾 = 0.5 ,          𝐾 ≈ 3 ,           𝜔𝑝 = Ω0 12⁄                    (49) 

that gives   

𝛿𝑡 = 1.5625 ,         𝛼 = 0.1256625                                                     (50) 
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Computer graphic realizations concerned with the function𝜑𝑃(𝜃0 , 𝑡) presented in eq.(38) 

show a pattern like that in Figure2. We supposed there A0=8: 

 

Figure 2: The 𝜑𝑃(𝑡) "placement function" of the pedestrians at site A. 

As for as the angular velocity at the beginning,Ω0, we assumed the following: 

∫ 𝜑𝑃(𝑡′)𝑑𝑡′ = 
2𝜋 Ω0⁄

0

∫ 𝑄(𝜃′, 𝑡0)𝑑𝜃′
2𝜋

0

 ,                                                (51) 

to get 

Ω0 = 0.50265 ,                𝑇 = 12.5  .                                                         (52) 
Making use of the explicit expression done in eqs. (38)-(40), we find analogous computer 

simulations for  𝑄(𝜃, 𝑡). 
Most in particular we analyzed the evolution of the system starting from three different 

initial angular positioning distributions of the buses at the time 𝑡0 = 0. We will also suppose 

we have four buses moving counterclockwise and put 𝑄𝑀 = 50. The initial bus placements are 

shown in the Figure 3. 
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Figure 3: The three sets of bus initial placements on the circuit 𝐶𝜁 considered in our simulation 

The sites of interest, corresponding also to the bus stops, i.e. the points A,B,C,D, are 

located, respectively, at the angular coordinates 𝜃 = {0 , 𝜋 2⁄ , 𝜋 , 3𝜋 2⁄ }, as is shown in 

the following Figure 4. 

B 

C (𝜋 𝑟𝑎𝑑)                  A(0 𝑟𝑎𝑑) 

 

              D 

Figure 4: The circuit 𝐶𝜁 and its interest points A, B, C, D. 

Concerning the final question raised at the end of the previous section, in this case we 

supposed pedestrians are allowed to repeat the round only if the sites they have not yet visited are 

beyond the site of "greatest interest" at that time, identified by the functions 𝕺𝒊(𝜃𝑗  , 𝑡)   shown in 

Fig.1.  Checking now the performance parameters (see eqs.(34)-(36)) measured at times 𝑡𝑘 = 𝑡0 +
𝑘𝑇 , 𝑘 = 5,10,15,20 , for the Cases1,2,3 of before, gives us an estimate of the goodness of the 

transport system model and the particular configurations examined. We obtained the following 

results, shown in Tables 1, 2, 3. 

Table 1: Case 1 

k (ordinal n of the lap) ⟨PL⟩ ⟨AC⟩ ⟨BS⟩ 
05 9.73 0.18 0.18 

10 9.23 0.12 0.21 

15 8.39 0.09 0.25 

20 7.45 0.08 0.28 

Table 2: Case 2 

k (ordinal n of the lap) ⟨PL⟩ ⟨AC⟩ ⟨BS⟩ 

05 8.08 0.24 0.12 

10 7.51 0.20 0.20 

15 7.16 0.12 0.24 

20 6.97 0.10 0.30 
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Table 3: Case 3 

k (ordinal n of the lap) ⟨PL⟩ ⟨AC⟩ ⟨BS⟩ 
05 8.98 0.22 0.19 

10 8.52 0.17 0.21 

15 8.20 0.11 0.24 

20 7.89 0.08 0.27 

Remembering that the goal of the service is to maximize the first parameter while minimizing 

the other two, the results shown in Tables 1,2,3,  even though preliminary, suggest what follows. 

The number of the pedestrians conveyed per unit length in the first fraction of the time is about 

8.5but it decreases in time, with a rate about  0.1 𝑇⁄  . The fraction of the number of seats not 

occupied on the buses with respect to the allowable one is initially about 20%  and it decreases in 

time with a rate about  1.2% 𝑇⁄  . The number of the pedestrians "lost by the buses", because they 

gone by feet, with respect to the total number of pedestrians entered 𝐶𝜁 , varies also with time, 

ranging from ∼ 0.17 at the beginning of the service until ∼ 0.28after about 100 minutes. Moreover, 

an initial displacement of the buses not perfectly symmetric with respect to the circuit  𝐶𝜁seems to 

perform slightly better than a symmetrical placement. We are aware, however, that a longer 

observation time and related simulation would be needed. 

5. Conclusion 

We developed the study of a quite generic linear configuration in transport system optimization 

problems and examined some tentative solutions. The problem proposed is essentially a theoretical 

exercise of transport kinematics with the inclusion of parameters coming from statistical data. These 

last include preferences of the visitors with respect to the sites to be visited, a psychological 

rejection by visitors themselves of crowded or desert places and, also, the more or less patience in 

waiting for the means of transport. The weight of these parameters in the development of the model 

may look of marginal relevance at the beginning, but it subsequently becomes noticeable because 

little changes in these parameters give rise to a rich variety of evolutions. Although this analysis is a 

theoretical one, the proposed treatment can be extended to practical situations simply by adding the 

right sets of values to the parameters included in the model. 

In the case at hand four buses serve an ever growing set of visitors to reach four strategic points. 

The goal was trying to minimize dispersion of visitors from the given points meanwhile minimize 

the time to complete the visits of visitors too and to avoid to have a service with low bus 

occupancies. 

From the three different configurations examined here, referring to four equally spaced visit 

points, we observed through simulations as a spatially symmetric buses distribution is a bit more 

efficient than others only in the first time period of the service. On the contrary, in the remaining 

time period, preliminary simulations indicate as a slight spatial asymmetry of the initial positioning 

satisfies better the requirements for further optimization. Time asymmetries in the arrival of the 

buses at the visit points become useful, indeed, in reducing diffusion effects of the pedestrians and 

overpopulation of the sites. Needless to say, the observations just done hold only for our case of full 

symmetries, concerning then buses, sites, capacities, velocities, frequency of arrivals and so on. It 

would be more interesting to try to apply the theory here presented in other, more realistic situations. 

The author will be responsible for making this extension in the near future.  
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