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Abstract: In this paper, we consider nonlinear two-point boundary value problem using the 

Interpolated Coefficients Finite Element Method (ICFEM). We use the slice k-degree 

polynomial interpolation for nonlinear term and use Newton's method to solve the 

nonlinear equation system. We find the error convergence order of the ICFEM has some 

obvious characteristics. When k is an odd number, the error order is the normal finite 

element convergence order. And when k is an even number, the error convergence order 

has super convergence. The numerical results show the error convergence order of the 3rd 

ICFEM at the nodes is basically the normal finite element convergence order k + 1, and k = 

2,4, the error convergence order of the 4th ICFEM at the node is generally higher than k + 

1, almost reaching the 2k order super. 

1. Introduction 

In recent years, in the fields of science, technology and engineering, we are often faced with the 

problem of solving Nonlinear Two-Point Boundary Value Problems. For instance, to exploit 

resources like oil, natural gas, etc., we need study the problem of seepage in underground porous 

media; to predict weather conditions, we need solve the fluid dynamics and thermodynamic 

equations that describe atmospheric motion. The phenomenon described by singular perturbation 

problem is often singular in a local area, its solution contains a boundary layer or an inner layer, and 

the solution or its derivative changes very drastically in this area. Its release has relation to small 

perturbation parameters in addition to variables. 

If a numerical method is used to solve Nonlinear Two-Point Boundary Value Problems on a 

uniform mesh, to achieve certain calculation accuracy, the local singularity will result in too fine 

mesh on the solution area, which will cause unnecessary calculation time and waste of data storage. 

Moreover, solution under uniform mesh will produce non-physical oscillation in the sharply 

changing area of the solution, leading to unsatisfactory results. Layer adaptive mesh is a non-

uniform mesh that can effectively solve singular perturbation problems [1], including Shishkin 

mesh [2], Bakhvalov mesh [3,4], Bakhvalov-Shishkin mesh [5], etc. This type of mesh has local 

encryption in the boundary layer. Scholars have studied various singular perturbation problems on 

the layer adaptive mesh, and some research results have been achieved, such as literature [6-7]. In 

the construction of layer adaptive mesh, we need select mesh transition points to determine the 
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mesh distribution. Therefore, how to select parameters in the mesh transition points so that the 

numerical solution can better approximate the exact solution is a very meaningful work. Literature 

solves a class of singular perturbation problems by using differential evolution algorithm to 

optimize parameters [8-9]. Literature uses differential evolution algorithm to solve a type of 

singular perturbation problems involving two parameters on Shishkin mesh. 

Interpolated Coefficients Finite Element Method (ICFEM) finds the solution through iteration. 

At present, ICFEM has been widely used in linear Two-Point Boundary Value Problems.In this 

paper, we consider nonlinear two-point boundary value problem using the Interpolated Coefficients 

Finite Element Method (ICFEM). 

2. Interpolated Coefficients Finite Element Method 

In this work, we consider nonlinear two-point boundary value problem with k = 2, 3, 4 using the 

Interpolated Coefficients Finite Element Method (ICFEM). 
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polynomials set of degree less than k on the element 
1( , )j j je x x . Then the Ritz-Galerkin finite 

element approximation of (1) can be expressed as  
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It can be found that when solving the nonlinear system of equations (3) by the Newton method, 

the tangent matrix needs to be calculated many times, and the workload is very large. Next, 

consider the interpolation coefficient finite element method for solving the nonlinear two-point 

boundary value problem (1). 
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Let , 1,2, ,iv i d  in (4), the nonlinear equation system as following 
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Then (5) can be written in matrix form 
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Finally, the nonlinear equation system (6) is solved by Newton's method. Through direct 

calculation, the Frechet derivative of G (U) (the Jacobi matrix) can be obtained  
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Then, for a given initial value 
0U ， the Newton iteration format for solving (6) is  

1k k k

kU U V   ，            (8) 

Where k  is the step factor and 
kV  such that ( ) ( ).k k kG U V G U    

3. Results and Analysis 

First, divide (0,1)I   into 4 units, and use 1,2,3k   and 4 Interpolation Coefficients Finite 

Element Method (ICFEM) to solve the nonlinear two-point boundary value problem (1), and the 

error curve is obtained as follows. As can be seen from the Figure 1-4, the accuracy is very high at 

the end nodes of the element (marked with * in the figure). For the k = 2, 4 (even) cases, there is 

also high precision at the midpoint of the cell (marked with + in the figure), while for k = 1, 3 (odd) 

cases, the error at the element midpoint is almost the largest on the entire element. 
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Figure 1: Error curves for ICFEM (k=1) Figure 2: Error curves for ICFEM (k=2) 

 

Figure 3: Error curves for ICFEM (k=3) Figure 4: Error curves for ICFEM (k=4) 

Define discrete 2L  error as following 
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Where 0,1, ,jx j N（ ） is the node of the element, ( )h ju  is the value at node 
jx  of the ICFEM 

solution hu .use 2,3k   and 4 Interpolation Coefficients Finite Element Method (ICFEM) to solve 

(1) for N = 2, 4, 8, 16, 32, 64. Discrete 2L  error is shown in Table 1. 

The "order" in the table refers to the error based on the two calculations before and after the 

estimated value of the convergence order obtained from the ratio of the differences, and its 

calculation formula is 

1 2

1 2, 1 2

1 2

log( / )
order , .

og( / )

N N

N N

error error
N N

N N
              (10) 

In Table 1, the number of units before and after is exactly 2 times the relationship, so the 

calculation of order is simplified to log2 (errorN / error2N). From the Table 1, it can be seen the 

solution of problem (1) for ICFEM (k=2) has the 4th-order convergence rate, the solution of 

problem (1) for ICFEM (k=4) has the 6th-order convergence rate. They have super-convergence. 
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While k = 3, the solution of problem (1) has ordinary finite element convergence rate of order 4. 

Table 1: The discrete 
2L  errors of k = 2, 3, and 4 

N 
k=2 k=3 k = 4 

error order error order error order 

2 
2.8909E-04 

 
N/A 1.8485E-05 N/A 1.6821E-05 N/A 

4 7.2206E-06 5.32 1.9046E-06 3.28 1.7469E-07 6.59 

8 4.9480E-07 3.87 1.2041E-07 3.98 2.2349E-09 6.29 

16 3.1205E-08 3.99 7.3961E-09 4.03 3.2744E-11 6.09 

32 1.9530E-09 4.00 4.5707E-10 4.02 1.4574E-13 7.81 

64 1.2206E-10 4.00 2.8255E-11 4.02 1.8423E-13 - 

Further, we plot the discrete 2L  errors of k = 1, 2, 3, 4, and 5 times ICFEM under various 

divisions as shown in Figure 5. It can be found that the convergence speeds of ICFEM (k =2, 3) are 

almost the same, again showing that the ICFEM (k=2) has a 4th-order super convergence. Similarly, 

Figure 5 also shows that the 4th-order ICFEM's convergence speed is comparable to that of k = 5, 

and even exceeds the convergence speed of k = 5. 

Finally, the errors for k = 1, 2, 3, 4 ICFEM of N = 4, 8, 16, 32 at the node are listed in Tables 2-5, 

respectively. The numbers in parentheses in brackets are the convergence order calculated from the 

ratio of the errors before and after, the calculation formula is shown in (10). From the data in the 

Table2-5, the error convergence order of the 3rd ICFEM at the nodes is basically the normal finite 

element convergence order k + 1, and k = 2, 4, the error convergence order of the 4th ICFEM at the 

node is generally higher than k + 1, almost reaching the 2k order super. 

 

Figure 5: Error curves for ICFEM (k=1, 2, 3, 4, 5) 
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Table 2: Errors of ICFEM (k=1) at nodal points for N = 4, 8, 16, 32 

N 4 8 16 32 

x = 1/4 4.3556E-05 2.6471E-06(4.04) 6.0739E-08(5.45) 2.3282E-08(1.38) 

x = 1/2 8.4443E-04 2.1454E-04(1.98) 5.3717E-05(2.00) 1.3433E-05(2.00) 

x= 3/4 1.6015E-03 4.0540E-04(1.98) 1.0157E-04(2.00) 2.5403E-05(2.00) 

x = 1 1.8623E-03 4.6942E-04(1.99) 1.1751E-04(2.00) 2.9386E-05(2.00) 

Table 3: Errors of ICFEM (k=2) at nodal points for N = 4, 8, 16, 32 

N 4 8 16 32 

x = 1/4 1.1789E-05 8.6422E-07(3.77) 5.5416E-08(3.96) 3.4833E-09(3.99) 

x = 1/2 3.4838E-06 8.6422E-07(3.77) 5.5416E-08(3.96) 3.4833E-09(3.99) 

x= 3/4 6.0159E-06 2.3161E-07(4.70) 1.2539E-08(4.21) 7.5467E-10(4.05) 

x = 1 4.6080E-06 1.6589E-07(4.80) 8.7559E-09(4.24) 5.2320E-10(4.06) 

Table 4: Errors of ICFEM (k=3) at nodal points for N = 4, 8, 16, 32 

N 4 8 16 32 

x = 1/4 2.1011E-06 1.1910E-07(4.14) 7.3411E-09(4.02) 4.5724E-10(4.00) 

x = 1/2 6.1175E-07 5.3181E-08(3.52) 3.4903E-09(3.93) 2.2100E-10(3.98) 

x= 3/4 2.0692E-06 1.4053E-07(3.88) 8.9106E-09(3.98) 5.5939E-10(3.99) 

x = 1 2.3324E-06 1.5550E-07(3.91) 9.8272E-09(3.98) 6.1643E-10(3.99) 

Table 5: Errors of ICFEM (k=4) at nodal points for N = 4, 8, 16, 32 

N 4 8 16 32 

x = 1/4 1.4911E-07 1.6962E-09(6.46) 2.4109E-11(6.14) 5.7843E-14(8.70) 

x = 1/2 2.2007E-07 2.9453E-09(6.22) 4.3920E-11(6.07) 1.6509E-13(8.06) 

x= 3/4 1.172E-07 2.3294E-09(6.20) 3.4766E-11(6.07) 9.2593E-14(8.55) 

x = 1 1.4803E-07 1.9886E-09(6.22) 2.9543E-11(6.07) 2.1483E-13(7.10) 

4. Conclusions 

We consider nonlinear two-point boundary value problem using the Interpolated Coefficients 

Finite Element Method (ICFEM). The errors for ICFEM k = 1, 2, 3, 4, 5) of N = 4, 8, 16, 32 at the 

node are listed in Tables 2-5 and Figure 2, respectively. The error convergence order of the 3rd 

ICFEM at the nodes is basically the normal finite element convergence order k + 1, and k = 2, 4, the 

error convergence order of the 4th ICFEM at the node is generally higher than k + 1, almost 

reaching the 2k order super. The higher dimension situation will be the furture work. 
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