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Abstract: During the last decade, conventional materials such as steel have been replaced 

by fibre-reinforced polymer (FRP) material for the strengthening of the concrete 

structures. Although externally bonded FRP reinforcement performed extremely well in 

practice, premature debonding failure was observed and identified by many researchers. 

To solve the problem, the method of near-surface mounted FRP rods was adopted. This 

technique becomes particularly attractive for flexural strengthening in the negative 

moment regions of slabs and decks, where external reinforcement would be subjected to 

mechanical and environmental damage and would require protective cover, which could 

interfere with the presence of floor finishes. 

1. Introduction 

In the paper of Francesco Focacci, Antonio Nanni and Charles E. Bakis (2000) named “Local 

Bond-Slip Relationship for FRP Reinforcement in Concrete”, a method for the determination of the 

parameters of a local τ=τ(s) relationship from results of pull-out tests that make into account the 

distribution of slip and bond shear stress along the embedded portion of the bar was proposed [1]. 

This method was applied to some pull-out test results, corresponding to different embedded lengths, 

and local τ=τ(s) relationships were found. Based on this method, different researchers have different 

conclusions in terms of the relationship between shear stress and loaded end slip, such as the “Tri-

Linear” model, the “BEP” model, the “Modified-B.E.P.” model, the “CMR” model, the “Naaman” 

model and the “Malvar” model. Among these models, the “Modified-B.E.P.” model is used wider. 

In the paper, we are going to discuss the application of the “Modified-B.E.P.” model [2]. 
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2. The “Modified-B.E.P.” model 

 

Figure 1: The Modified-B.E.P. model 

There are three parts in the Modified-B.E.P. model (Figure 1) [3]: 

 A non-linear ascending branch, of the form (s<s1) [Primary zone]: 

                                     )(
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 s1                                              (1) 

Ω describes the shape of the ascending branch, τ1 is the peak shear stress and s1 is the 

corresponding slip and
 s/11  . 

 A linear descending branch, describing degradation of the concrete-   reinforcement bond 

(s1<s<s2) [Degradation zone]:                   
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 A constant shear stress, representing residual friction (s2<s) [Secondary zone]: 

                                                      τ = τ2                                                                      (3) 

The values of 1, 2, 3 and Ω are parameters to be found. 
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3. Application of the Modified-B.E.P. model  

3.1 Governing equations for the Modified-B.E.P. model 

3.1.1 General governing equation for reinforcement-concrete bond 

 

Figure 2: Short embedded length specimen, for deriving governing equation 

The slip (s) of the reinforcement is the relative displacement between the concrete (UC) and 

the reinforcement (UF): 

                                                            CF UUs                                                                    (4) 

The differentiation of UC and UF with respect to the position gives the changes of strain in 

reinforcement and concrete after being bonded [3]. Writing the total strain in the concrete and 

reinforcement as ɛC and ɛF, then: 

                         
dx

dU

dx

dU

dx

ds CF   (no pre-load in the reinforcement)        (5) 

For,                                              C
C

dx

dU
  and F

F

dx

dU
  (no pre-load in the reinforcement) 

So,                                                      CF
dx

ds
   (no pre-load in the reinforcement)              (6) 

In terms of stress: 

                                                        
C

C

F

F
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Equation (7) can be differentiated again [4]: 
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                                                       (8) 

Where:   EF – Young’s modulus of the reinforcement 

               EC – Young’s modulus of the concrete 

               F – stress of the reinforcement 

               C – stress of the concrete 

In Figure 2, the changes in the concrete stress (δC) to changes in the reinforcement (δF) are 

related by the horizontal equilibrium of the specimen (or by equation (8)): 

 For the concrete, assuming that it forms a plane section: 
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Substitute equation (9) back into equation (8): 
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 For the reinforcement (Figure 2), the bond stress (τ): 
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4
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Substitute equation (11) back into equation (10):  

                                                 K
dx

sd


2

2

                                                               (12) 
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K describes the section properties of the specimen. If a single reinforcement (nF = 1) is placed at 

the centre of the specimen (d = dT/2), K simplifies to:  

                                               ]1[
4

CT

FF

F

EC
Ebd

EA

E
K 


                                                      (14) 

The plane-sections assumption is unlikely to be valid, so for eccentrically placed reinforcement 

K is likely to be somewhere between these two values. Ciampi et al.[5] assumed that the concrete 

deformation is negligible, giving KCE=4/( EF). 

Equation (12) is the general governing equation for reinforcement-concrete bond. It expresses 

equilibrium and compatibility requirements across the interface between the concrete and the 

reinforcement, but does not assume a particular τ-s model. 

3.1.2 The governing equation for the Modified-B.E.P. model 

Substitute equation (1), (2) & (3) back into equation (12) separately give the governing equation 

for the Modified-B.E.P. model: 
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 Primary zone (s<s1):                    
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 Degradation zone (s1<s<s2):   )()}({ 321
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 Secondary zone (s2<s):                                   22

2

K
dx

sd
                                                     (17) 

The values of 1, 2, 3 and Ω are parameters to be found. 

3.2 Boundary conditions for long embedded length directly pull-out test  

Typically there are two types of loading arrangements: one is the directly pull-out test in which 

only one end of the embedded length is loaded and the other is the beam pull-out test in which the 

embedded length is usually bonded by two cracks, and both ends of the embedded are loaded. Since 

the directly pull-out test is adopted in this thesis project, only the first loading arrangement (Figure 

3) is considered in this section. 

 

Figure 3: Stress reacted at the loaded end 

For there is no pre-load applied to the reinforcement while it was being bonded, the effect of the 

pre-stress in the reinforcement will not be considered here. 

The target of the boundary conditions is to allow the governing equations to be solved for pull-

out test. Generally it is applied to four special positions [6]: 

 The loaded end – one end of the embedded length to which the load was applied. 

 The free end – the other end of the embedded length where no load applied. 

 The end of the disturbed length – the end of the reinforcement along which slip occurs. 

 Transitions between different parts of the constitutive model – the constitutive model 

(Modified-B.E.P. model in this thesis) is a continuous curve that is composed of three different 

parts, and character of the connecting point of two different parts is selected as the boundary 

conditions. 
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3.2.1 Boundary conditions at the loaded end 

                                                               LDss                                                                    (18) 

For the reinforcement, if the applied load is F and the cross-sectional area is AF, the stress of it is: 

                                                            
F

F
A

F
                                                                 (19) 

In the directly pull-out test, since all the load is applied to one end of the embedded length, the 

reacted load is given by the concrete at the loaded end. The concrete stress at the level of the 

reinforcement could be derived from equilibrium as [7]: 

                                           )}(3{
4 2

3 TT

T

F
C dddd

bd

Fn
                                            (20) 

For a single reinforcement (nF =1) which is placed at the centre of the specimen (dT/2=d), C 

simplifies to: 

                                                           
T

C
bd

F
                                                              (21) 

Substitute equation (19) and (21) back into equation (7) gives: 

                                                    
CCFF EA

F

EA

F

dx

ds
                                                      (22) 

Where,                                                           TC bdA                                                                (23) 

(Note: Equation (22) above is derived under the condition that a single reinforcement is placed at 

the centre of the specimen without any pre-load applied on it, and this kind of condition is suitable 

for the direct pull-out tests of this thesis project). 

If the reinforcement is pull-out through the concrete without any significant crack on the surface, 

the 
dx

ds
 relationship at the loaded end must satisfy equation (22), but if it is pull-out from the surface 

of a crack: 

                                                                0C                                                                (24) 

(24) and (7) give                                 
FF EA

F

dx

ds
  (no pre-load)                                              (25) 
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3.2.2 Boundary conditions at the free end 

 
Figure 4: ED    , no slip at the free end 

As the load applied on the reinforcement increases, the length of the reinforcement along which 

slip occurs from the loaded end (disturbed length E ) increases until it equals to the embedded 

length ( D ) and slip occurs at the free end. So there are two situations for the free end [8]: 

a) If  ED    (Figure 4) 

Since the free end has not been disturbed yet: 

                                                                0s                                                                      (26) 

Concrete and reinforcement forms plane section, so: 

                                           FC     (no pre-load)                                                 (27) 

(27) and (6) give                                       0
dx

ds
                                                                 (28) 

b) If ED    

In this situation, the boundary conditions applied to the loaded end can also be applied here. 

So, if no significant crack occurs, the 
dx

ds
 relationship also satisfies equation (22), and because 

the applied force is (F) is zero, the value of  
dx

ds
 is equal to zero. 

3.2.3 Boundary conditions at the end of the disturbed length 

The disturbed length increases with the applied load until the end of the disturbed length reaches 

to the free end. At the end of the disturbed length, the concrete and reinforcement form a plane 

section (Figure 4) before the end of the disturbed length reaches to the free end, so: 
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                      FC                                                                   (27)bis 

(27) and (7) give                                             0
dx

ds
                                                                 (28)bis 

3.2.4 Boundary conditions at transitions between different parts of the constitutive model 

Since the constitutive model (Modified-B.E.P. model in this thesis) is a continuous curve with 

three parts that are governed by three different equations separately, the character of the connecting 

point of different parts could be a proper boundary condition. 

The constitutive model is continuous, so the two parameters in the model must be continuous: 

 The stress expressed by dxds /  (equation 11) must be continuous. 

 The slip(s) must be continuous. 

3.3 Solutions of the governing equations for long-embedded-length specimen 

 

Figure 5: Slip distribution according to the Modified-B.E.P. model 

There are three zones in the Modified-B.E.P. model which are governed by three different 

equations (1), (2) and (3) separately. As the tensile load is increased, the disturbed length increases 

and different zones present.  

Different zones will present at different ranges of loaded end slip (sLD) (Figure 5) [9] 

 sLD<s1,      Only primary zone present 

 s1<sLD<s2, Primary and degradation zones present 

 s2<sLD,  Primary, secondary and degradation zones present 

So, solutions of the governing for the three ranges of loaded end slips are required separately. 
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3.3.1 Only primary zone present 

If the range of the loaded end slip is sLD<s1, only the primary zone presents. The governing 

equation of the primary zone is: 

                                                            
 sK

dx

sd
12

2

                                                      (15)bis 

Where,                          ]1[
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
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(14), (15) give                                         
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sd
CE 12

2

                                                            (29) 

The boundary condition at the free end (x = 0) of the CFRP rod, 0s  and 0/ dsdx   can be 

used to solve the governing equation: 

                                                       
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At the loaded end (x = ℓD) of the CFRP rod, the disturbed length can be derived from the 

boundary condition (18), so: 

(30) gives                                        2

1

2

1 )1(

)1(2 
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 LD

CE
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K 

                                                (31) 

The tensile load applied (F) causing the slip can be found by the loaded end boundary condition 

(22): 

(30), (31), (22) give              
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(32) gives                                      2
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2
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F CE

FFCC
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Equation (33) above is suitable for the particular situation of this thesis: for each of the tests, a 

single CFRP rod (nF = 1) is placed at the centre of the specimens (d = dT/2) and no pre-load (P = 0) 

is applied on it. 

3.3.2 Primary zone and degradation zones present 

When the slip of loaded end exceeds s1, the degradation zone comes up but the length and shape 

of the primary zone (ℓ1) stays constant [10]: 

(31) gives                                          2

1

2

1

1
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)1(2 
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At the boundary between the primary and degradation zones: 

(32) gives                                            2

1
1

1
1

2
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The degradation zone is governed by equation (16) which is looked like: 
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The equation (36) is solved to get: 
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B1 and B2 are constants which are required for continuity of s and ds/dx at the boundary with 

primary zone (x = ℓ1): 
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(35) gives                                                                                                                                      (38) 
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Use the loaded end boundary condition equations (18), (22): 

(18) gives                       
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2
3231 )cos()sin(
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
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Depending on whether sLD or F is known, (39) or (40) is solved to give the disturbed length (ℓD), 

and the unknown variables is found from the unused equation . 

It is useful to note that for: 
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The disturbed length can be found from the loaded end slip: 

(40) gives  
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For ds/dx is positive, the negative root is used. j is chosen to give the first solution with ℓD> ℓ1. F 

is found from equation (40). 

The disturbed length can also be calculated from the applied load: 
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The negative root is used again, and j is chosen to five the first solution with ℓD> ℓ1. sLD is found 

from equation (39).  

3.3.3 Primary, degradation and secondary zones present 

All zones present when the slip of the loaded end exceeds s2, the shape and length of the primary 

and secondary zones remain constant. 

The combined length of the elastic and degradation zone (ℓ2) can be found using (42): 

(42) gives 
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At the boundary between the degradation and friction zones: 

(40) gives               )]sin()cos([)( 32232132  CECECEL KBKBK
dx

ds
                       (45) 

As equation (3) indicates, the bond-stress at the friction zone is constant. The governing of the 

friction zone is: 
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The slip can be calculated by integrating the equation (46): 
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The constants B3 and B4 are calculated by applying the boundary conditions 2ss   and equation 

(45) at 2x : 
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The boundary at the loaded end ( Dx   ) gives: 
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(18) gives                                  
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4. Conclusions 

For the long-embedded length, the governing equation is solved under the condition that the 

disturbed length (ℓD) does not exceed the embedded length (ℓE). However, for the short-embedded 

length test, since the bond is relatively weak, the free end of the rod starts to move in extremely 

short time after the tensile load is applied to the rod, which means the disturbed length increases to 

the embedded length in no time; this does not allow the governing equations of the short-embedded 

length case to be solved using boundary condition directly, because the boundary condition at the 

free end of the rod (equation (22)) is no longer suitable.  

In this paper, the analytical bond stress-slip curve (Modified-B.E.P. model) of the short 

embedded length specimen is not found by solving the equations using boundary conditions at first, 

but by well-fitting the three parts of the Modified-B.E.P. model which are governed by equations 

(1), (2) and (3) with the experimental curves. 
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