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Abstract: To compare the ability of efficiently prediction stock price based on CNN and 

LSTM method, we take the data from Tata Consultancy Services as our object to study. We 

run 35 times for their training and test loss and errors. Afterwards we made a comparison on 

the data, and getting the result that in contract to LSTM method, CNN method has a better 

ability on prediction accuracy in short time.

1. Introduction 

Financial markets are constantly changing, and people have always been very interested in stock 

forecasts. One of the great characteristics of stocks is uncertainty, and it is difficult to predict what 

will happen in the future and cause losses. The financial market is a dynamical system that is intricate, 

evolving, and non-linear. Data intensity, noise, non-stationarity, unstructuredness, high levels of 

uncertainty, and hidden relationships are characteristics of the field of financial forecasting [1].  

The law of the stock is difficult to be discovered, and the possibility of exploring it by traditional 

methods is small, which will cost a lot of time and energy. Aiming for large returns utilizing clearly 

defined trading techniques, stock market forecasters concentrate on creating approaches to accurately 

foresee index values or stock prices. The key to accurate stock market forecasting is to produce the 

best outcomes with the fewest possible inputs and the simplest possible stock market model [2]. The 

basic analysis method and the technical analysis method are the primary components of the traditional 

analysis method, which is based on economics and finance[3].  

Due to technological advancements in computer hardware and advancements in machine learning 

techniques in recent years [4], more creative methods are proposed. These algorithms include ANNs, 

evolutionary computation, swarm intelligence, artificial immune systems, and fuzzy systems. Bio-

inspired algorithms, which are designed after the central nervous systems of the brain, have 

demonstrated significant success in the field of artificial intelligence [5]. Deep Learning has emerged 

as one of the most alluring research areas in these years thanks to the extensive usage of powerful 

computers and the availability of vast amounts of data [4]. Given the unpredictability of the stock 

market model, soft computing techniques are strong contenders for capturing the nonlinear 

relationships in the stock market and producing meaningful forecasting results without necessarily 

requiring prior knowledge of the statistical distributions of the input data [2].  
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2. Literature Review 

According to big data and historical experience, it is not difficult to find that it is not easy to predict 

stock returns, and its volatility and uncertainty often cause difficulties in prediction. Technical 

analysis is a strategy that is frequently used to model and forecast the stock market. It is based on 

historical data from the market, primarily price and volume[6]. Political developments, broader 

economic conditions, and traders' expectations are just a few of the many variables at play in the 

world of finance. As a result, forecasting price changes in the financial market is challenging. 

Academic studies indicate that market price changes are increasingly not random[1]. As computer 

technology has moved deeper into finance, more forecasting and analysis methods have been 

developed to improve accuracy. To estimate a function by minimizing an upper bound of the 

generalization error, support vector machine (SVM), a highly particular form of learning algorithms, 

based on the unique theory of the structural risk minimization principle[1]. A time series forecasting 

method based on neural networks was put forth by Sun et al. in 2005. This approach combines the 

radial basis function (RBF) neural network with the optimal partition algorithm (OPA) [7]. In 2014, 

Adhikari et al. proposed a strategy combining arbitrary walk (RW) and manufactured neural organize 

(ANN) to anticipate four budgetary time arrangement information, the accuracy of prediction is 

greatly improved.[8] In 2018, the exploratory comes about of Hu et al. appear that convolutional 

neural organize can anticipate time arrangement, and profound learning is more appropriate for 

understanding the issue of time arrangement[3]. CNN is a type of machine learning algorithm that is 

used to solve problems like recognizing images and extracting features [8].  

The most potent deep learning methods, CNNs, have been employed extensively for a variety of 

computer vision tasks. Convolution layers and pooling layers alternately make up the usual CNN 

architecture. In contrast to conventional machine learning methods, the primary goal of this layering 

sequence is to derive high-level features, which avoids the human feature engineering stage [9]. CNN 

is frequently used in feature engineering because it has the characteristic of focusing on the most 

evident elements in the line of sight. LSTM, which is frequently employed in time series, has the 

property of growing in accordance with the passage of time [3]. Based on a stock forecasting model 

of CNN-LSTM, this essay lists a lot of experience and data, with the help of the computer to calculate 

the rule, and constantly according to the actual situation to detect, analyze and correct, finally get a 

more accurate prediction result. 

3. Method 

3.1. CNN 

In 1998, Lecun et al [10] proposed a network model called CNN, which is a kind feedforward 

neural network with good performance in image and natural language processing [11]. It can be 

effectively applied to the forecasting of time series. CNN can improve the efficiency of model 

learning by greatly reduce the number of parameters through local perception and weight sharing[12]. 

CNN is mainly consisted of two parts: the convolution layer and the pooling layer. Each convolution 

layer contains a plurality of convolution kernels, and its calculation formula is shown in formula 

(1).After the convolution operation of the convolutional layer, the features of the data are extracted, 

but the extracted feature dimension is very high, so in order to solve this problem and reduce the cost 

of training the network, a pooling layer is added after the convolutional layer to reduce Feature 

dimension: After the convolution operation of the convolutional layer, the features of the data are 

extracted, but the extracted feature dimension is very high, so in order to solve this problem and 

reduce the cost of training the network, a pooling is added after the convolutional layer layer to reduce 

the feature dimensionality: 
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𝑙𝑡 = tanh( 𝑥𝑡 ∗ 𝑘𝑡 + 𝑏𝑡)                                                           (1) 

where lt represents the output value after convolution, tanh is the activation function, xt is the 

input vector, kt  is the weight of the convolution kernel, and bt  is the bias of the convolution kernel. 

3.2. LSTM 

At time t, xt is the input data of the LSTM cell, ht−1 is the output of the LSTM cell at the previous 

moment, ct is the value of the memory cell, ht and is the output of the LSTM cell. The calculation 

process of the LSTM unit can be divided into the following steps 

(1) First, calculate the value of the candidate memory cell 𝑐̃𝑡,𝑊𝑐 is the weight matrix 𝑏𝑐 is the bias. 

𝑐̃𝑡 = tanh(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                                        (2) 

(2) Calculate the value of the input gate it, the input gate controls the update of the current input 

data to the state value of the memory cell, σ is sigmoid function,  Wi is the weight matrix, bi is the 

bias.  

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1 ,𝑥𝑡] + 𝑏𝑖                                           (3) 

(3)  Calculate the value of the forget gate ft, the forget gate controls the update of the historical 

data to the state value of the memory cell, Wf is the weight matrix, bf is the bias. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                        (4) 

(4) Calculate the value of the current moment memory cell ct, andct−1 is the state value of the last 

LSTM unit.  

 𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̃𝑡                                            (5) 

Where “*” represents dot product.The update of the memory element depends on the state value 

of the last element and the candidate element, controlled by the input gate and the forget gate 

(5) Calculate the value of the output gate ot, the output gate controls the output of the state value 

of the memory cell, Wo is the weight matrix, bo is the bias. 

𝑜𝑡 =  𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                         (6) 

(6) Finally, calculate the output of LSTM unit ℎ𝑡. 

ℎ𝑡 = 𝑜𝑡 ∗ tanh 𝑐𝑡                                                   (7) 

Three control gates and memory units, LSTM is convenient for saving, reading, resetting and 

updating long-term information. It should be noted that due to the sharing mechanism of LSTM 

internal parameters, the size of the output can be controlled by setting the size of the weight matrix. 

LSTMs build in long delays between input and feedback. Gradients neither burst nor vanish because 

the internal state of the memory cells in this architecture maintains a continuous stream of errors. 

4. Experimental results 

We take the data from Tata Consultancy Services as our object of study. Figure 1 shows the loss 

of the CNN method, we take the loss as the y-axis and epochs as the x-axis, and we run 35 times. 

Comparing the training loss and validation loss, we found that with the epochs going through, the 

trend of training loss and validation loss approaches down and keeps a similar trend. In the beginning, 

the validation loss keeps a level of 0.5; after 18 epochs, the validation training loss decreases and 

trends to a level of 0.1. It can be found that when we run 27 times later, we can see a slight change in 
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the loss. As for training loss, it keeps a similar trend as the validation loss line in that it continues at 

a level of 1.58 loss or so before 17 epochs, then it decreases quickly and trends to a 0.3 loss level. 

Finally, it keeps a stable level. The LSTM method is shown in Figure 2. Both Training loss and 

Validation loss fall immediately from 1 to 5 Epochs. After that, both of them tend to a low and stable 

line, approximately 0.00 loss. 

 

Figure 1: The training and validation loss of the CNN 

 

Figure 2: The training and validation loss of the LSTM 

Figure 3 and Figure 4 represent the training and validation errors of the CNN method and LSTM 

method separately. The following two graphs take Error as the y-axis and Epochs as the x-axis. What 

we can see here in figure 3 is that from 1 to 5 Epochs, the Error of Training and Validation falls 

steeply. After five epochs, training error and validation error fall stably. In the end, the training error 

trend to a level of 0.03 error, and the validation error trends to 0.02 error. 
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Figure 3: The training and validation error of the CNN 

 

Figure 4: The training and validation error of the LSTM 

We predict the Close Value of the CNN method and LSTM and put them in the next two graphs, 

Figure 5 and Figure 6 in these graphs, the number of Trading Days was designed as the x-axis, Close 

Value or scaled as the y-axis. Comparing the prediction result of the CNN method with the prediction 

result of the LSTM method, we can find though the shape of them are similar, it none the less be 

found the accuracy of the CNN method is much higher for its Close Value is much smaller. 

 

Figure 5: The prediction result of the CNN 
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Figure 6: The prediction result of the LSTM 

Now we conformity all lines into Figure 7 and Figure 8. in the following graphs, we can see the 

prediction on training samples, validation samples, and y-train. By studying the CNN method in 

Figure 7 and LSTM- method in Figure 8, we can see the CNN method has a better fit on prediction 

both on training samples and validation samples since the close value is ten times smaller than LSTM- 

method. 

 

Figure 7: Integration of forecasts result of the CNN 

 

Figure 8: Integration of forecasts result of the LSTM 

It is discovered that CNN has 5 times higher accuracy on Train RMSE, and 4 times higher accuracy 
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on Test RMSE. Comparing the Mean absolute percentage error of CNN and LSTM by table1, we can 

clearly find that CNN has a 5 to 6 times smaller number of mean absolute errors, which means it has 

a greater accuracy on the stock price prediction. Then we take the test MAE, getting the result that 

LSTM has 4 times larger error than CNN.  

Table 1: The comparison of CNN and LSTM result 

 
Train 

RMSE 

Train 

MAE 

Train 

MAPE 

Test 

RMSE 
Test MAE Test MAPE 

CNN 0.0007 0.0006 0.0014 0.0010 104.6630 3.5933 

LSTM 0.0037 0.0030 0.0057 0.0048 479.4051 16.7314 

5. Conclusion 

In this paper, we investigate the use of an LSTM network system to predict future trends in stock 

prices based on historical empirical prices as well as technical analysis indicators in an attempt to 

improve the reliability of the predictions. To achieve this goal, we perform a series of experiments 

using a large collection of historical data to build a relevant database and forecasting model, and 

continuously revise the predicted trends based on the generated results. The models make full 

advantage of the time sequence properties and various stock data comparisons. The features of the 

input data are extracted by CNN, and LSTM is then used to learn the feature data to forecast the 

ending price of the stock. In order to validate the experimental findings, this research uses pertinent 

data from Tata Consultancy Services as an example. We run 35 epochs for CNN and LSTM method, 

comparing their training and testing loss, training and testing error. We finally find the higher 

accuracy of the CNN method compering with the LSTM method in short term prediction. In the end 

of the experience, we list a table for comparison. It can be found easily that CNN has 4 to 6 times 

more accurate. Thus, we conclude that the CNN method has a better ability on the accuracy of 

prediction in short time. We hope our article can help more people to learn about CNN and LSTM 

method. 
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