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Abstract: In this paper, a stochastic collocation method is considered for one-dimensional 
Maxwell equations with uncertainty. The random inputs of model problem comes from the 
dielectric constant, magnetic permeability, and the initial and boundary conditions. We 
first prove the regularity of the solution of one-dimensional Maxwell equations. Then the 
convergence of our numerical approach is verified. Further some relevant numerical 
examples are implemented to support the analysis.

1. Introduction 

In the study of complex physical or engineering problems, there are always some uncertain 
factors related to physical or engineering problems, such as model parameters, boundary and initial 
data, random interference, regional irregularities, etc. In this case, for obtaining reliable numerical 
predictions, one has to include uncertainty quantification due to the random input data. Recently, 
there have some numerical methods for solving of partial differential equations with random inputs, 
such as Monte Carlo and sampling based methods [1-3], perturbation methods [1], the generalized 
polynomial chaos (gPC) methods [1], etc. 

Now, the gPC method has been widely used to analyze PDEs with random inputs. Gottlieb and 
Xiu made the first attempt by considering a simple model of a scalar wave equation with random 
wave speeds [4]. Tang and Zhou proposed some rigorous regularity analysis for the same problem 
and demonstrated the convergence of the stochastic collocation methods [5]. 

In this work, we consider the maxwell equation with random inputs using the s-tochastic 
collocation methods. Collocation methods have been studied and used in different disciplines for 
uncertainty quantification (see, e.g., [6-9]). Following the methods introduced by [6], we use the 
roots of the next higher order polynomial as the points. A Lagrange interpolation of the solution w(x, 
y) can be written as 

1
( , ) ( ) ( ),

N
N

k k
k

I w x y w x F y
=

=∑            (1) 

Where 

, ( ) ,1 , ,k N i k ikF P F y i k Nδ∈ = ≤ ≤           (2) 
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are the Lagrange interpolation polynomials, and ( )= ( , ),1k kx x y k nω ω ≤ ≤  is the value of w at the 
given node { } .ky ∈Θ  In this work, we will apply the Lagrange interpolation approach to the 
maxwell equation with random inputs: 

∂tH(x, t; y(ω)) = µ(y(ω))∂xE(x, t; y(ω)), x∈D ≡ (−1, 1), t > 0,  
µ(y(ω)) > 0, ∂tE(x, t; y(ω)) = ε(y(ω))∂xH(x, t; y(ω)), x∈D ≡ (−1, 1), t > 0, ε(y(ω)) > 0,          (3) 

E(x, 0; y(ω)) = E0(x; y(ω)), H(x, 0; y(ω)) = H0(x; y(ω)) x ∈ D          (4) 

Let (Ω, A, P) be a complete probability space. Here Ω is the set of outcomes, A is the σ-algebra 
of events, P is a probability measure, and y is a random variable. Let ρ(y) : Γ → R+ be the 
probability density functions of the random variable y(ω), ω∈Ω, and its image Γ=y(Ω) R be 
intervals in R. In what follows, for simplicity, we just omit the symbol ω and assume that y is in the 
parametric space Γ=[-1, 1]. A well-posed set of boundary conditions is given by: 

E(−1, t; y) = EL(t; y); H(−1, t; y) = HL(t; y)  
E(1, t; y) = ER(t; y); H(1, t; y) = HR(t; y)          (5) 

Eqs.3-5 complete the set up of the problem. We now solve problem (3-5) by using the Lagrange 
interpolation approach. We first choose a set of Gauss-collocation-points 1{ }N

i iy = , that is, 0{ }N
i iy =  are 

the roots of some polynomial N+1Φ . We then solve the following system of equations: 

∂tH(x, t; jy ) = µ( jy )∂xE(x, t; jy )  

∂tE(x, t; jy ) = ε( jy )∂xH(x, t; jy )          (6) 

Note that with the collocation method the boundary conditions and the initial conditions can be 
proposed easily, which is not the case in the Galerkin methods [7]. More precisely, we have 
together with the initial condition. 

E(−1, t; jy ) = EL(t; jy ); H(−1, t; jy ) = HL(t; jy )  

E(1, t; y jy ) = ER(t; jy ); H(1, t; jy ) = HR(t; jy )          (7) 

E(x, 0; jy ) = E0(x; jy ); H(x, 0; jy ) = H0(x; jy )          (8) 

The approximation solution for the original problem(3-5) is given by 

0
( , ; ) ( , ; ) ( ),

N
N y

N k k
k

E x t y I E E x t y F y
=

= =∑
  

0
( , ; ) ( , ; ) ( ),

N
N y

N k k
k

H x t y I H H x t y F y
=

= =∑
          (9) 

Where y
kF are the standard Lagrange interpolation polynomials defined by (2). 

2. Regularity in Various Spaces 

2.1 Regularity in H1 

Following [1], if u∈L2 ⊗Hk(D), then u(., y, t) ∈Hk(D) a.e. on Γ and u(x, t, .) ∈ L2(Γ) a.e. on 
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D. Moreover, we have (for every fixed t < T) the isomorphism 

L2 ⊗Hk(D)   L2(Γ; Hk(D))  Hk(D; L2(Γ)) 

With the definitions 

2 ( , ( ))kL H DΓ { }2

( )
= (., , ) ,kH D

D R v is strongly measurable and v y t dx
Γ

Γ× → < +∞∫  
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Γ Γ

Γ Γ× → ∀ ≤ ∃∂ ∈ Γ ⊗

∂ = − ∂ ∀ ∈ Γ×∫ ∫ ∫ ∫
 

We also denote 

Γ+ = {y|y ∈ Γ, and ε(y) ≥ µ(y)}, Γ− = {y|y ∈ Γ, and ε(y) < µ(y)}. 

With the above definitions, we now introduce the following lemma. 
Lemma 2.1. Consider the problem (3-5).If the following conditions are satisfied: 

2 2
0 0D

( )(( ( ; )) ( ( ; )) ) ,x xy E x y H x y dxdyρ
Γ

∂ + ∂ < +∞∫ ∫           (10) 

+

T

0

( ) ( . . ) ,
( ) t R t R t L t L

y E H E H dydt
y

ρ
εΓ

∂ ∂ − ∂ ∂ < +∞∫ ∫           (11) 

-

T

0

( ) ( . . ) ,
( ) t R t R t L t L
y E H E H dydt
y

ρ
µΓ

∂ ∂ − ∂ ∂ < +∞∫ ∫
  

Then 
2 2

D
( )( ) ( ), 0 ,x xy E H dxdy C T t Tρ

Γ
+ < < ≤∫ ∫           (12) 

Where ρ(y) > 0 is the probability distribution function and C(T) is a positive constant depending 
on T. 

Proof. It follows from the governing equation (3) that 

∂t(𝐸𝐸𝑥𝑥2) = 2Ex · Etx = 2ε(y)ExHxx, x ∈ D, t > 0          (13) 

∂t(𝐻𝐻𝑥𝑥2) = 2Hx · Htx = 2µ(y)HxExx, x ∈ D, t > 0          (14) 

If HxExx and ExHxx are positive, which leads to 
2 2

D
( )( )t x xy E H dxρ∂ +∫ D

=2 ( )( ( ) ( ) )x xx x xxy y E E y H H dxρ ε µ+∫  
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2 ( )/ ( )( ), ( ) ( ),
=

2 ( )/ ( )( ), ( ) ( ).
t R t R t L t L

t R t R t L t L

y y E H E H if y y
y y E H E H if y y

ρ ε ε µ
ρ µ ε µ

∂ ⋅ ∂ − ∂ ⋅ ∂ ≤
 ∂ ⋅ ∂ − ∂ ⋅ ∂ >

 The above result  together with (13) and (14), yields 

2 2

D
( )( )x x

d y E H dxdy
dt

ρ
Γ

+∫ ∫ +
2 2 ( )/ ( )( )t R t R t L t Ly y E H E H dyρ ε

Γ
≤ ∂ ⋅ ∂ − ∂ ⋅ ∂∫

-
+2 2 ( )/ ( )( ) .t R t R t L t Ly y E H E H dyρ µ

Γ
∂ ⋅ ∂ − ∂ ⋅ ∂∫  

The desired estimate (12) is obtained by integrating the above inequality with respect to t and by 
using the assumption (10). 

Theorem2.1. Consider the problem 3-5. Assume that there exists a constant C such that 
max {|εJ(y)|, |µJ(y)|} ≤ C, almost everywhere in Γ,          (15) 

i.e., ε(y), µ(y) is bounded in the distribution sense in Γ. If the assumption (10) holds and 
furthermore if 

2 2
0 0D

( )(( ( ; )) ( ( ; )) ) ,y yy E x y H x y dxdyρ
Γ

∂ + ∂ < +∞∫ ∫   

+

T

0
( ) ( )( . . ) ,y R y R y L y Ly y E H E H dydtρ ε

Γ
∂ ∂ − ∂ ∂ < +∞∫ ∫          (16) 

-

T

0
( ) ( )( . . ) ,y R y R y L y Ly y E H E H dydtρ µ

Γ
∂ ∂ − ∂ ∂ < +∞∫ ∫

  
Then 

2 2

D
( )( ) ( ), 0 ,x xy E H dxdy C T t Tρ

Γ
+ < < ≤∫ ∫           (17) 

Where C(T) is a finite number depending on T. 
Proof. Differentiating both sides of (3) with respect to y gives 

(Ey)t = εj(y)Hx + ε(y)(Hy)x, 
Which yields 

(𝐸𝐸𝑦𝑦2)t = 2εj(y)HxEy + 2ε(y)Ey(Hy)x. 

Similarly, 

(𝐻𝐻𝑦𝑦2)t = 2µj(y)HyEx + 2µ(y)Hy(Ey)x. 

Integrating the above equation with respect to x leads to 
2 2

D
( )( )t y yy E H dxρ∂ +∫ D

=2 ( )( ( ) ( ) )y x y xy y E H y H E dxρ ε µ′ ′+∫  

D
+2 ( )( ( ) ( ) )y yx y yxy y E H y H E dxρ ε µ+∫  

D D
2 ( ) ( ) 2 ( ) ( )y x y xy y E H dx y y H E dxρ ε ρ µ′ ′≤ +∫ ∫
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2 ( ) ( )( ), ( ) ( ),
+

2 ( ) ( )( ), ( ) ( ).
y R y R y L y L

y R y R y L y L

y y E H E H if y y
y y E H E H if y y

ρ ε ε µ
ρ µ ε µ

∂ ⋅∂ − ∂ ⋅∂ ≤
 ∂ ⋅∂ − ∂ ⋅∂ >

 Which yields 

2 2

D
( )( )y y

d y E H dxdy
dt

ρ
Γ

+∫ ∫ 2 2 2 2

D
( )( )x x y yC y E H E H dxdyρ

Γ
≤ + + +∫ ∫  

+
+2 2 ( ) ( )( )y R y R y L y Ly y E H E H dyρ ε

Γ
∂ ⋅∂ − ∂ ⋅∂∫  

-
+2 2 ( ) ( )( ) .y R y R y L y Ly y E H E H dyρ µ

Γ
∂ ⋅∂ − ∂ ⋅∂∫

 Where the boundedness assumption of ε(y) and µ(y) are used. The desired estimate (17) follows 
from Lemma 2.1, Gronwall inequality and the assumption (16). 

Remark 2.1. It is worthwhile to point out that, the modifification of both the boundary 
and the initial data will lead to a higher regularity of the solutions for the problem 1−3. 
Actually, under some appropriate assumptions on the boundary and initial conditions, 
inspired by Theorem 2.1, we can get the following regularity results for the k-th 
derivatives of the solutions, i.e., 

2 2

D
( )(( ) (( )) ) ( ), 0 .

k k

k k

E Hy dxdy C T t T
y y

ρ
Γ

∂ ∂
+ < < ≤

∂ ∂∫ ∫
 

3. Convergence of the Collocation Method 

Given a function f, its expectation is defined by 

D
[ ] ( ) ( , )E f y f x y dxdyρ

Γ
= ∫ ∫

  
And its mean square is defined by 

( )1/2
2[ ] ( ) ( , ) .

D
M f y f x y dxdyρ

Γ
= ∫ ∫

 Lemma 3.1. ([2], p.289. Estimates for the interpolation error.) Assume a given function ω(y) 
satisfies ω(m) L2 (1, 1) and denote IN ω its interpolation polynomial associated with the (N + 1)-
point Gauss, or Gauss-Radau, or Gauss-Lobatto points 1{ }N

i iy = , namely, 

0
( ) ( ) ( ).

N

N i i
i

I y y F yω ω
=

=∑           (18) 

Then for m ≤ N the following estimate holds 

ǁω −𝐼𝐼𝑁𝑁ωǁ ≤ C𝑁𝑁−𝑚𝑚ǁωǁ         (19) 
Theorem 3.1. Let E, H be the solution of 3-5 and EN, HN be the stochastic collocation solution of 

9. If the assumptions in Theorem 2.1 are satisfied, then the following estimates on the mean-square 
and mean errors hold: 

ems(E − 𝐸𝐸𝑁𝑁) := M [E − 𝐸𝐸𝑁𝑁] ≤ C(T)𝑁𝑁−1, 0 < t ≤ T,          (20) 

emean(E −  𝐸𝐸𝑁𝑁) := E˜ [E −  𝐸𝐸𝑁𝑁] ≤ C(T)𝑁𝑁−1, 0 < t ≤ T,          (21) 
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Similarly, 

ems(H − 𝐻𝐻𝑁𝑁) := M [H − 𝐻𝐻𝑁𝑁] ≤ C(T)𝑁𝑁−1, 0 < t ≤ T, 

emean(H − 𝐻𝐻𝑁𝑁) := E˜[H −𝐻𝐻𝑁𝑁] ≤ C(T)𝑁𝑁−1, 0 < t ≤ T, 
Where C(T) is a constant depending on T but independent of N. 
Proof. For any fixed x, it follows from Lemma 3.1 that 

( )2 2 2( ) ( , ; ) ( , ; ) ( ) .N
yy E x t y E x t y dy CN y E dyρ ρ−

Γ Γ
− ≤∫ ∫           (22) 

Integrating the above inequality with respect to x and using Theorem 2.1 yield the 

desired estimate (20). As for (21), it follows from a standard inequality 1 2 .L L
Cω ω≤  

Remark 3.1. It is noted that the regularity of the solutions for our model problem can be much 
better when the regularity of both the boundary and initial conditions is good enough  
according to Remark 2.1. As a result, under some appropriate assumptions for the boundary and 
initial conditions, we can obtain a similar estimate to those in Theorem 3.1 for a general k with k ≥ 
1. It implies that we can acquire the exponential convergence rate when the boundary and initial 
data are smooth. 

4. Numerical Examples 

In this section we present some numerical examples to support the theoretical results derived 
above. In all computations, ε = 1, µ is a random variable uniformly distributed and the 
corresponding simple points are the Legendre-Gauss points. 

4.1 Example with H1, H2, H3 in the Random Space 

Consider the following problem: 
∂tH = µ∂xE, t > 0, 1 < µ < 3, 

∂tE = ε∂xH, t > 0, ε = 1, 
With the following three initial conditions 

( ,0; ) 4sgn( 2)( 2), 1 1,1 3,

( ,0; ) cos( ( 1))4sgn( 2)( 2), 1 1,1 3;
2

E x x

H x x x

µ µ µ µ
πµ µ µ µ

= − − − < < < <



= − + − − − < < < <  
2

2

( ,0; ) 4sgn( 2)( 2) , 1 1,1 3,

( ,0; ) cos( ( 1))4sgn( 2)( 2) , 1 1,1 3;
2

E x x

H x x x

µ µ µ µ
πµ µ µ µ

 = − − − < < < <



= − + − − − < < < <
3

3

( ,0; ) 4sgn( 2)( 2) , 1 1,1 3,

( ,0; ) cos( ( 1))4sgn( 2)( 2) , 1 1,1 3;
2

E x x

H x x x

µ µ µ µ
πµ µ µ µ

 = − − − < < < <



= − + − − − < < < <  
The corresponding boundary conditions are 
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( 1, ; ) 4sgn( 2)( 2),
(1, ; ) 4sgn( 2)( 2),

( 1, ; ) cos( ) 4sgn( 2)( 2),
2

(1, ; ) cos( ) 4sgn( 2)( 2);
2

E t
E t

H t t

H t t

µ µ µ
µ µ µ

π µ
µ µ µ

π µ
µ µ µ

− = − −
 = − −

 − = − + − −


 = + − −
  

2

2

2

2

( 1, ; ) 4sgn( 2)( 2) ,
(1, ; ) 4sgn( 2)( 2) ,

( 1, ; ) cos( ) 4sgn( 2)( 2) ,
2

(1, ; ) cos( ) 4sgn( 2)( 2) ;
2

E t
E t

H t t

H t t

µ µ µ
µ µ µ

π µ
µ µ µ

π µ
µ µ µ

 − = − −
 = − −

 − = − + − −


 = + − −
  

3

3

3

3

( 1, ; ) 4sgn( 2)( 2) ,
(1, ; ) 4sgn( 2)( 2) ,

( 1, ; ) cos( ) 4sgn( 2)( 2) ,
2

(1, ; ) cos( ) 4sgn( 2)( 2) ;
2

E t
E t

H t t

H t t

µ µ µ
µ µ µ

π µ
µ µ µ

π µ
µ µ µ

 − = − −
 = − −

 − = − + − −


 = + − −
  

It can be checked that the exact solutions for the above three initial boundary value problems are: 

1( , ; ) sin( ( 1))sin( ) 4sgn( 2)( 2),
2 2

( , ; ) cos( ( 1))cos( ) 4sgn( 2)( 2);
2 2

E x t x t

H x t x t

π µπµ µ µ
µ

π µπµ µ µ


= + + − −





= − + + − −

2

2

1( , ; ) sin( ( 1))sin( ) 4sgn( 2)( 2) ,
2 2

( , ; ) cos( ( 1))cos( ) 4sgn( 2)( 2) ;
2 2

E x t x t

H x t x t

π µπµ µ µ
µ

π µπµ µ µ


= + + − −





= − + + − −  

3

3

1( , ; ) sin( ( 1))sin( ) 4sgn( 2)( 2) ,
2 2

( , ; ) cos( ( 1))cos( ) 4sgn( 2)( 2) ;
2 2

E x t x t

H x t x t

π µπµ µ µ
µ

π µπµ µ µ


= + + − −





= − + + − −  
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Figure 1: Example of Section 4.1: mean-square errors for E with different regularity. 

Which can be verified to belong to H1, H2, H3 respectively. In fact, the initial conditions given 
above only belong to H1, H2, H3 respectively. Fig.1 presents the mean-square and mean errors 
against the number of nodes. It is clear from Fig.1 and Fig.2 that the corresponding convergence 
rates for the mean-square errors are 1, 2, and 3, respectively, which agrees well with the theoretical 
predictions. The rate for the mean errors seems better than the theoretical predictions, which implies 
that the estimate may not be sharp for the mean errors. 

 
Figure 2: Example of Section 4.1: mean-square errors for H with different regularity. 

4.2 A Smooth Problem 

Consider the following problem: 
∂tH = µ∂xE, t > 0, 1 < µ < 3, 

∂tE = ε∂xH, t > 0, ε = 1, 
With the following three initial conditions 

( ,0; ) 0,

( ,0; ) cos( ( 1));
2

E x

H x x

µ
πµ

=



= − +

 The corresponding boundary conditions are 

( 1, ; ) 0,
(1, ; ) 0,

( 1, ; ) cos( ),
2

(1, ; ) cos( );
2

E t
E t

H t t

H t t

µ
µ

π µ
µ

π µ
µ

− =
 =

 − = −


 =
  
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It can be checked that the exact solution for the above initial-boundary value problems are: 

1( , ; ) sin( ( 1))sin( ),
2 2

( , ; ) cos( ( 1))cos( );
2 2

E x t x t

H x t x t

π µπµ
µ

π µπµ


= +





= − +

It is clear from Fig.3 that the exponential rate of convergence can be obtained. 

Figure 3: Example of Section 4.2: Mean-square errors for a smooth solution. 

5. Conclusion

In this work, we first give some regularity results to the Maxwell equation with random inputs.
The implementation of the stochastic collocation method seems convenient to handle nonlinear or 
more complicated problems. Stochastic methods for Maxwell equation with random inputs are still 
in the early stage of development. This paper provides a preliminary investigation on the stochastic 
collocation method for 1-dimension Maxwell equation. It has been demonstrated that the rate of 
convergence depends not only on the initial data and boundary conditions, but also on the random 
terms.The higher dimension situation will be the furture work. 
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