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Abstract: Electroencephalography (EEG) emotion recognition has important research value 

in the fields of medical and criminal investigation, so in recent years, deep learning 

methods have been widely used in the field of EEG emotion recognition. Generally, the 

spatial and temporal features of EEG signals can reflect the spatial information of EEG in 

different brain regions and the long-term features of time-related continuous EEG signals. 

However, the problem of obtaining accurate spatial and temporal features of sequence 

signals has been neglected in previous studies. In addition, the spatial information 

transformation of electrode points on brain regions is not accurate enough. To address 

these issues, we propose a sensitive transformation and multi-level spatiotemporal 

awareness based EEG emotion recognition model. Through this method, accurate spatial 

information and more comprehensive EEG spatiotemporal features can be obtained. The 

evaluation results of SEED dataset show that the proposed approach improves on the 

state-of-the-art in EEG emotion recognition. The accuracy rates of subject-dependent and 

subject-independent emotion recognition are 98.49% and 97.95%, which exceeds the best 

previous accuracy by 1.18%. 

1. Introduction 

Emotion recognition from EEG signal is an active research topic in the field of computer vision 

in recent years. Compared with traditional non-physiological signals such as speech [1], expression 

[2], action [3], text [4], EEG signals have characteristics that cannot be disguised [5]. Therefore, the 

use of EEG signals for emotion recognition is of great significance in key fields such as medical 

treatment and criminal investigation. 

It is important to accurately transform electrode points on different brain regions. The device that 

captures EEG signal is called an electrode cap. Electrode caps are connected by multiple electrode 

points and wires arranged in a ‘10/20 system’ [6]. According to the '10/20 system', researchers often 
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use the sparse mapping method [7] and the compact mapping method [8] to obtain the spatial 

information of EEG signal. The sparse mapping method uses a 19*19 sparse matrix, which has a 

large amount of data and takes a long time to calculate the model. To solve this problem, compact 

mapping methods are proposed. The compact mapping matrix is 8*9, which greatly reduces the 

amount of data. However, the transformation positions of the electrode points did not meet the 

relationship between the electrode points and the brain area and the connection relationship between 

the electrode points as stipulated by the 10/20 system. 

The processed data can be used for emotion recognition through machine learning or deep 

learning methods. EEG signal are sequential signal related to time. In machine learning methods, 

researchers usually first manually extract the wavelet energy feature of EEG [9], or differential 

entropy feature (DE) [10]. Then, support vector machine (SVM) [11] and radial basis function 

neural network (RBF-NN) [12] are used for emotion recognition. The manual extraction method is 

labor-intensive, and the method needs to segment the EEG signal into data segments, resulting in a 

reduction in the amount of data. And the feature extracted by the machine learning method are 

shallow, and the recognition accuracy is low. In order to solve these problems, with the 

development of deep learning, many researchers apply deep learning methods to emotion 

recognition based on EEG signal. Some studies [13-14] still manually extract local feature of EEG 

signal and then use deep models to learn deep feature. The shortcomings of manual feature 

extraction are still unavoidable. Therefore, the direct use of deep models for feature extraction and 

emotion recognition has become the key to research. Taking the EEG signal as input, a 

Convolutional Neural Network (CNN) [15] or Deep Belief Network (DBN) [16] model is employed 

for emotion recognition. Although this method can effectively learn data feature, it is poor in 

temporal feature learning. Therefore, Elham et al. [17] adopted a three-dimensional convolutional 

neural network (3D-CNN) for emotion recognition from EEG. However, this method can only learn 

the context information of adjacent moments, and the 3D model is computationally intensive. In 

order to effectively learn the long-term temporal feature of EEG signal, Acharya [18] et al. adopted 

a long short-term memory network (LSTM) model, but LSTM cannot learn the spatial feature of 

EEG signal well. 

Through the above analysis, the field of EEG emotion recognition faces two problems. First, 

design an EEG signal transformation model to retain accurate spatial information. According to the 

electrode position and connection relationship specified by the '10/20' system, the design is more in 

line with the relationship model between electrode points and different brain regions. Second, 

design a more comprehensive model for feature learning. Deep models for EEG emotion 

recognition require the ability to learn both spatial and long-term temporal feature. 

To address the above issues, this paper proposes a sensitive transformation and multi-level 

spatiotemporal awareness based EEG emotion recognition model (STSAM) model. The model 

consists of three parts. First, the sensitive transformation model. The normalized EEG signal data is 

used as the input, and the electrode point data at each moment is used for sensitive conversion, so as 

to retain the accurate brain area spatial information of the electrode points. Second, the multi-level 

spatiotemporal awareness model. Taking sensitively transformed data as input, it can effectively 

learn the long-term spatiotemporal feature of EEG signal. Third, the emotion recognition model. 

The emotion recognition function of EEG signal is realized by this model.  

The main contributions of this paper include three aspects: 

(1) A sensitive transformation model is proposed. This method completely transforms the 

electrode point positions specified in the "10/20 system", and retains more accurate spatial position 

information of EEG signals than other transformation methods. 

(2) A multi-level spatiotemporal awareness model is proposed. The model effectively learns the 

spatiotemporal features of EEG signals. A self- awareness method is introduced to improve the 

32



recognition accuracy. 

(3) Evaluating our proposed approach on SEED dataset. The result suggest that our approach 

achieves significantly batter performance that state-of-the-art approaches. 

2. Related Works 

In order to effectively preserve the spatial information of EEG signal, Li et al. [19] proposed a 

sparse transformation method. The data size transformed by this method is a sparse matrix of 19*19. 

Training a sparse matrix requires a large amount of computation and low efficiency. To solve this 

problem, Shen et al. [8] adopted a compact transformation method. The size of the data is 

transformed by this method is 8*9. Compared with sparse transformation methods, the amount of 

data is reduced and the model computation is low. However, the compact transformation method 

does not fully comply with the positional relationship between electrode points and different brain 

regions and the connection relationship between electrode points specified in the '10/20' system. 

This method will lead to inaccurate spatial information of the transformed EEG signal, thereby 

affecting the learning of spatial feature by subsequent models. 

Emotion recognition methods in EEG signal include machine learning and deep learning. 

Machine learning methods mainly treat EEG signal as time-correlated one-dimensional waveform 

signal. Manual feature extraction is first performed on the EEG signal. The extracted feature include 

time domain feature, frequency domain feature, time-frequency domain feature and nonlinear 

feature. The time-domain feature include the mean, skewness, variance, and standard deviation of 

EEG signal. Frequency-domain feature are methods of transforming time-domain signal into 

frequency space. The time-frequency domain feature is a combination of the time domain feature 

and the frequency domain feature of the EEG signal data, and the feature are more comprehensive. 

For example, Xu et al. [20] extracted the five-band feature of EEG signal, and then performed 

short-time Fourier transform (STFT) to calculate the power spectrum feature. However, the 

methods of extracting time-frequency feature all need to segment the EEG into data segments, 

which reduces the amount of data, and the learned feature are only current short-term feature. Since 

EEG signal are long signal that change continuously, it is important to extract long-term feature. 

This problem can be effectively solved by adopting the differential entropy feature (DE) [21] in 

nonlinear feature. Afterwards, classification methods such as Support Vector Machine (SVM) [11] 

and Radial Basis Function Neural Network (I-RBF-NN) [12] can be used for emotion recognition. 

The shortcomings of the machine learning method are that the feature extracted are shallow and the 

recognition accuracy is low. 

To learn deep feature, the field has adopted deep learning methods for autonomous feature 

extraction and emotion recognition. With the advancement of deep learning methods, EEG-based 

emotion recognition has adopted deep learning methods for autonomous feature extraction and 

emotion recognition. Dan et al. [16] applied Deep Belief Network (DBN) to EEG-based emotion 

recognition. DBN models can learn deep data feature, but DBNs cannot learn high-level abstract 

feature. Therefore, Chao et al. [22] proposed a Deep Belief Network Conditional Random Field 

(DBN-CRF) model, which solves the problem that DBN cannot fully capture the contextual 

information of EEG signal. However, the DBN-CRF model cannot accurately learn the spatial 

characteristics of EEG in different brain regions. To solve this problem, Song et al. [23] introduced 

the graph structure into the EEG-based emotion recognition model, and proposed an EEG emotion 

recognition method based on Dynamic Graph Convolutional Neural Network (DGCNN). The 

method utilizes a graph structure to represent EEG signal. However, EEG signal are time-related 

signal, and temporal feature should also be fully considered in emotion recognition. Elham et al. [17] 

adopted a three-dimensional convolutional neural network (3D-CNN) for emotion recognition from 
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EEG. The model constructs the data of each moment into a 2D space matrix, and then superimposes 

the data of multiple moments to form a 3D matrix as the model input. Although this method can 

learn contextual information, it can only learn short-term feature, and the 3D model is 

computationally expensive. In order to learn the long-term feature of EEG signal, Acharya et al. [18] 

adopted the Long Short-Term Memory (LSTM) model. Although LSTM is suitable for learning 

long-term temporal feature, it cannot learn the spatial feature of EEG signal well. In order to 

effectively learn the spatiotemporal feature of EEG signal, some studies [24-25] employ a cascaded 

model of CNN and LSTM. These studies provide us with a good idea of model linking. 

In summary, how to effectively and accurately obtain the spatial information of EEG signal and 

learn the long-term spatiotemporal feature of EEG signal is the main research direction in this field.  

3. Methods 

 

Figure 1: STSAM architecture 

In this paper, we propose a sensitive transformation and multi-level spatiotemporal awareness 

based EEG emotion recognition model (STSAM), in order to accurately preserve EEG spatial 

information and learn spatiotemporal feature. The model diagram of STSAM is shown in Figure 1. 

The data is EEG signal data with 62 electrode points. The data for each electrode point is a 

time-correlated one-dimensional signal. First, normalize the data to be between [-1,1]. Then, the 

EEG data obtained from 62 electrode points per unit time was used as the input to the model. 

Through the sensitive transformation model, the input data has accurate spatial information of 

electrode points. Through a multi-level spatiotemporal awareness model, the long-term 

spatiotemporal characteristics of EEG signal are learned. Finally, the softmax classifier is used to 

classify emotions into three categories: positive, neutral and negative, and the accuracy of emotion 

recognition is obtained. 

3.1 Sensitive Transformation Model 

EEG signal are acquired by electrode points on the electrode cap. The '10/20' system electrode 

placement method [6] specifies the positional relationship between the electrode points on the 

standard electrode cap and different brain regions and the connection relationship between the 

electrode points. Figure 2(a) shows the regular distribution of electrode points in the '10/20' system. 

In the process of data transformation, it is necessary to be sensitive to the position of electrode 

points in order to retain accurate spatial information of EEG signal. 

Li et al. [26] proposed a sparse transformation method as shown in Fig. 2(b). The size of the 

sparse transformation matrix is 19*19, which is computationally intensive. Therefore, Shen et al. 

[27] adopted a compact transformation method, as shown in Fig. 2(c). The compact transformation 

matrix size is 8*9, which greatly reduces the amount of data. The connection relationship between 

adjacent electrode points in the matrix is stronger. But the mapped matrix is not sensitive to the 

spatial information of electrode points. In view of the shortcomings of the above two transformation 

methods, this paper proposes a sensitive transformation model, as shown in Figure 3. The size of 
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the sensitive transformation matrix is 9*9. Compared with the sparse transformation method, this 

transformation model matrix is small and the model computation is small. Compared with the 

compact transformation method, the connection relationship between FP1, FPZ, FP2, P3, P4, P5, P6, 

P7, P8 electrode points and F1, FZ, F2, PO5, PO6, PO7, PO8 electrode points is more in line with 

'10/ 20' system. And the positional relationship between FP1, FPZ, FP2, AF3, AF4 electrode points 

and brain regions is more in line with the '10/20' system. The sensitive transformation model 

preserves accurate spatial information of EEG signal, which helps subsequent models learn accurate 

spatial feature. 

   
(a)                          (b)                       (c) 

(a) ‘10/20’ system (b) Sparse transformation (c) Compact transformation 

Figure 2: ‘10/20’ system electrode placement method and EEG signal transformation 

 

Figure 3: Sensitive transformation 

3.2 Multi-Level Spatiotemporal Awareness Model 

The multi-level spatiotemporal awareness model consists of multi-layer convolution channels, 

multi-layer Gate Recurrent Unit (GRU) channels and self-attention modules. 

The multi-layer convolution channel consists of a lightweight 3-layer convolution for learning 

the spatial feature of EEG signal. The three layers of convolution all use 3*3 convolution kernels, 

and the number of channels is 32, 64 and 128 respectively. The model uses ReLu as the activation 

function to speed up the calculation and the convergence of the model. The input and output data 

size of each layer of convolution remains the same, which is 9*9. Since the training EEG samples 

are high-dimensional small sample data, Dropout is introduced to solve the overfitting problem. 

And its calculation method is shown in formula (1), where 𝑦 is the input and 𝑦′ is the output, a 

Bernoulli distribution with probability 𝑝 is used to randomly generate the same 0 or 1 value as the 

number of nodes. 

𝑦′ = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) ∗ 𝑦                          (1) 

The multi-layer GRU channel consists of 2-layer GRUs to learn long-term temporal feature of 

EEG signal. The definition of the GRU formula is shown in formula (2) to (5), where 𝑥𝑡 is the 

current input, ℎ𝑡−1 is the hidden state passed from the previous node, ℎ𝑡 is the hidden state of the 

previous node, 𝜎 is the sigmoid function, 𝑊𝑧、𝑊𝑟、𝑊 is the parameter of forward propagation 
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learning, zt is the update gate, 𝑟𝑡 is the reset gate, and ℎ𝑡̃ is the hidden state after reset using the 

tanh activation function. Two layers loop gate channels are 64 and 32. Recurrent neural networks 

(RNNs) commonly used to learn long-term temporal feature include LSTMs and GRUs. Compared 

with LSTM, GRU has fewer parameters and faster computation speed [28]. Therefore, our 

multi-level spatiotemporal awareness model uses GRU to learn temporal feature for easier model 

training. 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡])                          (2) 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡])                          (3) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ⋅ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡])                     (4) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡                     (5) 

According to the review of the self-attention mechanism in reference [29], this paper adopts the 

attention mechanism approach described below. The input data 𝑋 has a total of n nodes. The 

probability distribution 𝑃(𝑋) of each input node on each category is calculated by softmax and its 

calculation method is shown in formula (5). Then the obtained probability distribution 𝑃(𝑋) is 

re-acted on the input data 𝑋 according to the formula (6). Through this method, each node of the 

input data becomes the output data 𝑋′  with a class probability distribution. The higher the 

probability of some nodes of the data on a certain category, the more relevant the category is, and it 

is necessary to be more aware of this part of the nodes. 

𝑃(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑋𝑋𝑇)                       (6) 

𝑋′ = 𝑃(𝑋)𝑋                           (7) 

In the multi-level spatiotemporal awareness model, multi-layer convolution channels are used to 

learn spatial feature of EEG signal, multi-layer GRU channels are used to learn long-term temporal 

feature of EEG signal, and self-attention is used to improve recognition accuracy. Learning 

spatiotemporal feature through this model is beneficial for subsequent sentiment classification. 

3.3 Emotion Recognition 

We divided the emotions expressed by EEG signal into three categories, namely positive, neutral 

and negative. STSAM finally uses the full connection and softmax function to calculate the 

probability of the input sample data on different categories. We introduce the 

softmax_cross_entropy loss function to pass the deviation of the predicted value from the label 

value during backpropagation. The purpose is to avoid the phenomenon of numerical overflow due 

to the relatively large probability value of the output node, and to ensure the stability of numerical 

calculation. The category with the largest output probability value is the predicted category of the 

input sample data. The probability of correct recognition of all EEG signal samples is the accuracy 

of emotion recognition. 

4. Experiment 

In this experiment, we explored the impact of the proposed STSAM in the field of EEG emotion 

recognition. First, we introduce the dataset and experimental setup we used. Then, compare the data 

transformation models proposed by other researchers to explore the effect of our proposed sensitive 

transformation model. Then, subject-independent and subject-dependent EEG emotion recognition 

experiments were carried out using STSAM. Explore the effect of STSAM by comparing it with 

models proposed by other researchers. Finally, the ablation experiment is carried out, which proves 
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that every part of the model plays a role in the emotion recognition task. 

4.1 Dataset 

To verify the effectiveness of the proposed model, we perform validation on the SEED dataset 

[30] published by Shanghai Jiao Tong University in 2015. EEG emotions in this dataset are divided 

into three categories: positive, neutral, and negative. The dataset consists of 15 subjects, and each 

subject has 15 experiments, including 5 positive, 5 neutral, and 5 negative emotional stimuli 

experiments. That is, a total of 225 experiments are included in the SEED dataset. Each experiment 

contained 4 min of continuous EEG signal data recording at 62 electrode points. The sampling 

frequency of the EEG signal is 200Hz. 

4.2 Experiment Setup 

The sampling frequency of the EEG signals in the SEED dataset is 200Hz, that is, 200 frames of 

EEG signal data with 62 electrode points can be acquired per second. In order to avoid the problem 

of subject emotional instability at the beginning and end of the experiment, we intercepted the data 

from the first minute to the third minute of each experiment. That is, a total of 5.4*106 frames of 

data samples can be obtained from 225 experiments. Normalize the data samples between [-1, 1] as 

model input. 

First, the data in the input STSAM is transformed to preserve the spatial information. Each frame 

of data is the EEG data acquired by 62 electrode points, so the data of each frame can use sensitive 

transformation to include its electrode point position information. Then, subject-independent and 

subject-dependent EEG emotion recognition experiments were performed using the multi-level 

spatiotemporal awareness model respectively. In the subject-independent experiments, we use one 

of the 15 subjects as the test set and the other as the training set for 15 experiments. The results of 

15 experiments were averaged as the subject-independent EEG emotion recognition accuracy. In 

the subject-dependent experiments, we conduct ten-fold cross-validation experiments with each of 

the 15 subjects' own data. A total of 15 experiments were performed. The results of 15 experiments 

were averaged as the subject-dependent EEG emotion recognition accuracy. 

The experimental parameters of STSAM are set as follows, using the Tensorflow framework, 

Batch-size is 64, Dropout is 0.5, the loss function is softmax_cross_entropy, and the L2 

regularization coefficient is set to 10-4. The feature extractor is optimized using the Adam 

optimization algorithm with a learning rate of 1×10-3, and 5% of the data is selected as the 

validation set. The experiment uses a combination of theoretical analysis and emotion recognition 

accuracy as evaluation criteria. The hardware platform is Intel i7-6700, the memory is 16G, and the 

GPU is NVIDIA 1070. 

4.3 The Effectiveness of Sensitive Transformation 

The input EEG data are mapped by the sparse mapping method, the compact mapping method 

and the sensitive transformation mentioned in 3.1 respectively. The multi-level spatiotemporal 

awareness model in STSAM was used for subject-independent EEG emotion recognition. Table 1 

shows the performance comparison of the three data transformation methods on the SEED dataset. 

Among them, the sensitive transformation method contains more accurate spatial information of 

electrode points and brain regions than other methods, so the recognition accuracy is higher. In 

addition, the time-consuming of our method is close to that of the compact mapping method, which 

is one third of that of the sparse mapping method. By comparing the performance of the three data 

mapping methods, the sensitive transformation method has high accuracy and relatively low time 
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consumption. Therefore, the following experiments adopt the sensitive transformation method 

proposed in this paper. 

Table 1: Performance Comparison of Three Mapping Methods on SEED dataset. 

2D map Map shape ACC Time cost per epoch 

Compact Mapping 8*9 96.97% 88s 

Sparse Mapping 19*19 97.55% 255s 

Sensitive Transformation (ours) 9*9 97.95% 91s 

4.4 STSAM for Subject-Independent EEG Emotion Recognition 

Table 2 shows the performance comparison between the proposed STSAM in this paper and 

current methods for subject-independent emotion recognition on the SEED dataset. Compared with 

the method of manual feature extraction first, STSAM uses a deep model to learn features, and the 

learned features are deeper. Compared with other deep models, our sensitive transformation method 

preserves more accurate spatial information, and our multi-level spatiotemporal awareness model 

learns more comprehensive long-term spatiotemporal features. Therefore, we have achieved the 

current highest recognition accuracy rate, reaching 97.95%. 

Table 2: The results of the subject-independent emotion recognition experiments. 

Method Ave-Acc 

MSFBEL[31] 74.23% 

GAN [32] 84.00% 

3D-CNN[17] 88.49% 

DGCNN[23] 90.40% 

DECNN[33] 90.41% 

4DCNN-LSTM[27] 92.88% 

MSPCA-TQWT[34] 93.10% 

K-NN[35] 95.85% 

CNN-SAE-DNN[36] 96.77% 

ATT-CRNN(ours) 97.95% 

4.5 STSAM for Subject-Dependent EEG Emotion Recognition 

Table 3 shows the performance comparison between the proposed STSAM in this paper and 

current methods for subject-dependent emotion recognition on the SEED dataset. Compared with 

other deep models, STSAM has the advantage of preserving accurate spatial information and 

learning long-term spatiotemporal features. Therefore, it has achieved the best recognition accuracy 

rate in recent years, reaching 98.49%. 

Table 3: The results of subject-dependent emotion recognition experiments. 

Method Ave-Acc 

SSFBEL[31] 85.75% 

MSFBEL[31] 87.87% 

DGCNN[23] 90.40% 

DE-GELM[37] 90.83% 

DE-CNN[38] 91.68% 

ATT-CRNN(ours) 98.49% 
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4.6 Ablation Experiment 

In order to verify that each part of the STSAM proposed in this paper affects the experimental 

results, four models are designed for ablation experiments. The model structure and experimental 

results are shown in Table 4. By comparing M2 and M1, it is necessary to use sensitive 

transformation to preserve spatial information. Through the comparison of M3, M4 and M1, it is 

valuable to learn the temporal and spatial characteristics of EEG signals in the field of emotion 

recognition. 

Table 4: Ablation experimental models 

Model 

Model Structure 

ACC sensitive 

transformation 

multi-layer 

convolution 

multi-layer 

GRU 

M1 √ √ √ 97.95% 

M2 × √ √ 95.31% 

M3 √ × √ 94.07% 

M4 √ √ × 94.83% 

In summary, the STSAM proposed in this paper effectively preserves the spatial information of 

electrode points and learns comprehensive long-term spatial and temporal features. In the field of 

EEG emotion recognition, state-of-the-art results have been achieved. 

5. Conclusions 

EEG signal have the advantage that they cannot be camouflaged, so EEG emotion recognition 

has important research value in the fields of medical treatment and criminal investigation. In order 

to solve the problem of accurate spatial information between electrode points and brain regions and 

EEG signal combined with spatiotemporal features, which were ignored in previous studies. This 

paper proposes a sensitive transformation and multi-level spatiotemporal awareness based EEG 

emotion recognition model (STSAM). A sensitive transformation model is adopted to preserve 

accurate spatial information. A multi-level spatiotemporal awareness model is used to learn 

comprehensive spatiotemporal features of EEG signal. The SEED dataset is used for 

subject-dependent and subject-independent EEG emotion recognition, and the accuracy rates are 

98.49% and 97.95%. The experimental results are 1.18% higher than the previous best accuracy, 

reaching the state-of-the-art in this field. 

In future work, we will use other EEG signal datasets to learn and optimize the model. In 

addition, self-collected data will be considered for experiments, in order to enhance the 

generalization ability of the emotion recognition model proposed in this paper. 
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