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Abstract: With the continuous development of automation research, automatic driving has 

become the trend of The Times. In practice, the driver can relax during driving and enter 

the state of breaking out of the control loop. However, due to the technical limitations of 

autonomous driving, the driver is required to take over the vehicle to deal with sudden 

dangerous situations. Therefore, we conducted a driving simulator experiment to analyze 

the eye movement behavior and take-over performance of the driver before and after taking 

over the vehicle in the state of off-loop. The operational response of drivers to emergencies 

after the release of take-over request (TOR) was used to measure take-over performance. 

Eye-movement behavior parameters of drivers in take-over process were obtained by 

tracking eye-movement behavior with eye tracker. At the same time, uc-WinRoad, a virtual 

reality software, was used to obtain the driver's reaction time and evaluate the quality of 

the control. 

1. Introduction 

Studies show that autonomous driving technology [1] has benefits for society, drivers, and 

pedestrians. Automatic driving can realize automatic emergency braking to avoid obstacles, 

recognize traffic signs, plan ahead routes, assist parking, and other functions [2].Autonomous 

vehicles can reasonably plan their respective routes through information interaction between 

vehicles, save traffic congestion costs and ensure the safety of drivers and pedestrians [3]. Second, 

autonomous driving provides drivers with a new in-car experience. Kim et al. recently described in 

their research on autonomous vehicles that drivers can participate in social interaction, 

entertainment, or office activities while driving vehicles [4, 5]. However, the application of 

automatic driving in real life will also cause many harms: Lucifora et al. [6] investigated the dual 

contributions of moral judgment and risk analysis in subjects facing dangerous situations when 

automatic driving vehicles are faced with inevitable conflicts. Monkhouse et al. [7] defined an 

enhanced vehicle control model (VCM), extending the concept of controllability and joint cognition 

to highly automated tasks. 

The American Society of Automotive engineers (SAE), according to the development of the 

automatic driving process, vehicle automated driving grading standards for six grades [8].In the 
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future, conditional automatic driving will occupy the automated vehicle market for a long time, 

which requires the driver to take over the car again in the case of automatic driving system failure 

or system limit, which is called automatic driving takeover [9]. As automation dominates vehicle 

control in advanced intelligent driving, the measurement standards of actual operation in the vehicle 

running state are no longer applicable.  

Many scholars have studied the quality of automatic driving takeover in different aspects. Korber 

et al. [10] study influence of age on driver take-over quality. Zeeb et al. [11] Analyzed the influence 

of driver's gaze on the road in take-over request mode on the occurrence of accidents. In the study 

of Feldhutter et al. [12], after more than 20 minutes of continuous automatic driving time, the 

driver's sight began to deviate from the driving screen. 

2. Experimental Design and Process 

2.1. Experimental Equipment 

Simulation and data acquisition module: This study was conducted in Forum8's driving simulator 

(Fig1), which consists of three LED screens and a cockpit to produce realistic vehicle operation 

effects (e.g. steering, braking) and provide a view of about 180°. To create a more visually realistic 

autonomous driving environment and takeover scenes, three-dimensional real-time virtual reality 

software UC-WinRoad was used to realize the panoramic simulations of the driving environment 

and trigger events. The subjects wore Tobii Pro Glasses2 eye tracker (Fig2) throughout the 

experiment to track eye movement behavior and record eye movement data. The portable recording 

equipment connected with THE HDMI cable ensured the behavioral freedom of the participants 

while driving. At the same time, through the eye movement instrument is ultra wide angle camera 

output, participants view direction video scenes, using pupil corneal reflection and eye dark pupil 

position tracking, eye movement trajectory through the eyes of four eye cameras, a gyroscope and 

an acceleration sensor were the real horizon of eye movement data, guaranteeing the stability of eye 

movement data collection and data of high quality, as shown in Figure 1 and 2. 

 

Figure 1: Driving simulator 

 

Figure 2: Eye tracker 
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Data extraction module: Approved by the ErgoLAB human-machine interactive platform for 

data preprocessing, linear interpolation, packet loss compensation, by moving average filtering 

method for signal de-noising, using I - VT (incremental visual tracking) algorithm extraction and 

scanning data, finally obtain each simulation driving and look at all subjects, scanning, and the 

pupil related eye movement parameters. 

2.2. Participants and Experimental Design 

We recruited a total of 11 subjects, all of whom held driving licenses, had normal visual function, 

strong awareness of traffic safety, had no traffic accident experience, and had no automatic driving 

experience. 

Uc-winroad design event type factors include dynamic (D) and static (S) events . The time 

budget factor is 4S and 6s, and all events appear before the takeover request (TOR) 5s. There are 

ten key takeovers, which occur every 120s. The adjacent events include DD, SS, DS and SD in four 

possible sequences. The traffic volume in the opposite direction is moderate. In the same direction, 

to avoid the driver always perceiving dynamic events in advance, the driver will occasionally be 

overtaken by a faster vehicle. The simulation scenario was carried out on a three-lane expressway, 

with a total length of about 19km and a duration of about 25min. When the vehicle is not under 

takeover, it drives automatically at a speed of 60km/h and runs in the right-most lane. TOR is 

represented by visual plus auditory warning signals. The automated system is deactivated along 

with TOR's cues, and the vehicle slows down slightly without driver intervention. 

2.3. Experimental Process 

After understanding the simulation experiment process, participants sat in a driving simulator 

wearing a good eye tracker, adjusted their driving position, and calibrated the eye-tracking system. 

The experiment started with about 5min of training, which was similar to the formal experiment. 

During the training, no key events were set and only a takeover alarm was demonstrated. The 

purpose was to help participants get familiar with the simulator and the autonomous driving vehicle 

and adapt to the presentation of the takeover requests. 

The official experiment started in manual driving mode, and the driver switched to automatic 

driving mode after driving about 500 meters. The driver is asked to take his hands off the steering 

wheel, feet off the pedals and remain free to observe the driving environment when the automatic 

system is activated. After driving for a period of time, a critical takeover scenario will appear. 4s or 

6s (the set time budget) will give an alarm before the system limits, and the driver will take over the 

vehicle control and perform the corresponding operations, then return to the right-most lane, and 

then the system will automatically switch back to the automatic driving mode. Each participant 

experienced 10 key takeover scenarios, which lasted about 40 minutes. 

3. Data analysis 

To process vehicle data using MATLAB, the driver's UC data should be read first: Time, 

distance Along Road, speed Limit, speed In Km Per Hour),throttle, break and steering Velocity, 

offset From Lane Center and offset From Road Center.  

With position as the independent variable and speed In Km Per Hour, throttle break, steering 

velocity, offset From Lane Center, and offset From Road Center as the dependent variables, the 

scatter chart of one driver is shown in figure 3: 
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Figure 3: Scatter diagram of driver's UC data 

3.1. Eye Movement Behavior of Drivers in Takeover Process 

3.1.1. Visual Attention Allocation of Drivers before TOR 

We first explore the allocation of visual attention of drivers in the process of conditional 

automatic driving. Due to different ways of presenting events, drivers may have different stimuli, so 

it is expected that drivers will show different visual attention responses when perceiving different 

event types before the alarm. 

According to the corresponding relationship between the start and end locations and the time of 

each subject's UC data event location, the start and end times of 10 events were divided into time 

units to screen visual data in the event occurrence process. Take time as independent variable, 

blink(Blink), gaze(Fixation), sundering(Saccades), and left eye pupil diameter(leftPupil) as the 

dependent variable, respectively, to draw the scatter diagram and histogram of the driver. The 

maximum and minimum value, mean value, variance, and standard deviation of visual data from the 

beginning to the end of each subject were calculated. Taking one of the drivers as an example, the 

histogram and scatter diagram of the blink data are drawn, as shown in Figure 4. Histogram and 

scatter plot of fixation data, as shown in Figure 5. Scan histogram and scatter plots of the data, as 

shown in Figure 6. 
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Figure 4: Histogram and scatter diagram of blink data 

 

Figure 5: Histogram and scatter plot of fixation data 

 

Figure 6: Histogram and scatter plot of scan data 

The obtained data show that in the first 5s of the take-over request, the average sundering 

duration of the driver is 0.64s (SD=0.33) and 0.40s (SD=0.25) respectively in the face of the events 

induced by dynamic and static scenes. The fixation duration was 2.73s (SD=1.18) and 3.47s 

(SD=0.92). 

Analysis shows that in dynamic scenes, drivers search for potential danger information except 

for moving targets through frequent saccades and short-term gaze.In static scenes, the driver will 

spend longer focusing on a few specific fixation targets without fully scanning other elements on 

the road due to the progressively wider field of view of the target that induces takeover. 

3.1.2. Analysis of Eye Movement Indicators before and after TOR 

In comparison, the saccades of drivers after TOR were significantly reduced compared with 

those before TOR, but the release of TOR did not significantly affect the saccade duration of drivers, 
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and drivers' fixation behavior increased, which was manifested by a significant increase in fixation 

duration and average fixation time. Meanwhile, the pupil diameter of the driver TOR was 

significantly enlarged. 

The analysis shows that the decrease of saccades and the increase of gaze behavior indicate that 

the drivers have strengthened their attention to potential dangerous events after taking over the 

request. 

In addition, the tension and urgency brought by the sudden alarm lead to a sudden increase in the 

psychological load of the driver, which is shown by a sudden increase in the diameter of the driver's 

pupil, reflecting the driver's eager to control the psychology when facing the sudden 

change.Therefore, saccade duration and pupil diameter can predict the driver's behavior after 

control transfer to some extent. 

3.2. Take-over Response of the Driver 

3.2.1. Reaction Time 

However, there were significant differences in braking response time and steering response time 

between different event types, which triggered our thinking. 

The braking response of dynamic events is 0.48s faster than that of static event, which has 

shorter braking response time. At the same time, the steering response of static events is 1.12s faster 

than that of dynamic events, and the steering response time is shorter. In addition, there is a 

significant difference in the steering response time between 4S and 6s, so it can be seen that the 

shorter the time budget given to the driver, the faster the steering response will be. 

The analysis shows that, due to the uncertainty of dynamic events, more drivers subconsciously 

choose to reduce the speed first to ensure driving safety. However, as the sense of crisis brought by 

static events is far less than that of dynamic events, many drivers will first think of changing lanes 

or going around to avoid obstacles. 

3.2.2. Operation Mode and First Reaction Behavior 

3.2.1 is the stress behavior after the emergency, so in the few seconds of preparing to take over, 

how will the driver choose to avoid risk? 

For further research, Pearson correlation analysis (Table 1) was conducted on four response time 

indicators (takeover response time, braking response time, steering response time, and throttle 

response time), and it was found that there was a strong positive correlation between takeover 

response time and braking response time (r=0.907, P <0.001). This indicates that after the take-over 

request is issued, the driver will consciously brake to make the first reaction to the take-over 

control. 

Table 1: Correlation analysis of response indicators 

Pearson’s r 
Takeover response 

time 

Brake reaction 

time 

Turn reaction 

time 

Throttle response 

time 

Takeover response time — 0.907 (p < .001) 0.154 0.431(p < .001) 

Brake reaction time  — 0.011 0.211 

Turn reaction time   — 0.106 

Throttle response time    — 
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3.3. Driver Take-over Quality 

By analyzing the descriptive statistics of the four indicators measuring the quality of the nozzles 

(Table 2), it can be concluded that the driver shows greater steering wheel rotation in the face of 

static events and more brake control in the face of dynamic events. And the 6s's time budget shows 

a safer control takeover than the 4S. Therefore giving more time to budget when issuing TOR can 

improve the takeover quality. 

There are several related dependent variables. 

Max_lateral_offset is the maximum lateral displacement of the driver-controlled vehicle at the 

TOR moment after issuing TOR, which can represent the stability of lane change after the driver 

takes over control in obstacle avoidance scenarios. 

Standard deviation of steering velocity(Steering Velocity_std) is used as an evaluation index of 

driver's lateral control stability, in which the steering wheel rotation rate refers to the rate of change 

of steering wheel Angle, and its dispersion degree is measured by the standard deviation of the 

steering wheel rotation rate. A smaller standard deviation indicates a more stable steering wheel 

control. 

Percentage change in average speed(Per_Speed Change) provides a cumulative reading of the 

driver's speed change over the course of the takeover, providing a comprehensive assessment of the 

driver's longitudinal control operation. The formula is as follows, with a higher percentage 

indicating a sharp change in speed (severe braking or acceleration). 

Per_SpeedChange=
100

n−1
∑k=1

n−1 |Xk+1−Xk|

Xk
                      (1) 

(x is the speed input value, k is the number of frames, and n is the window size) 

Minimum Collision Time(Min_CT) is an alternative measure of safety and controllability. It 

refers to the shortest time before a vehicle collides with a vehicle or an obstacle in front of it. If a 

collision occurs, Min_CT is zero. In this study, Min_CT was measured before the driver had 

performed sufficient steering to make a lane change through the obstacle. 

Table 2: Analysis of data of four indicators to measure takeover quality 

 
The event type Time budget 

dynamic static 4s 6s 

Max_lateral_offset 4.52 (0.83) 4.89 (0.95) 4.84 (1.42) 4.61 (0.90) 

Steering Velocity_std 0.02 (0.01) 0.03 (0.02) 0.03 (0.02) 0.02 (0.02) 

Per_Speed Change 0.61 (1.47) 0.19 (0.79) 0.96 (2.10) 0.26 (0.66) 

Min_CT 2.04 (1.63) 1.80 (1.86) 1.15 (1.85) 2.52 (1.36) 

3.4. Comprehensive Indicators of Takeover Performance 

Sections 3.2 and 3.3 of this paper have analyzed the situation of driver take-over control in detail 

from the time level and quality level, but failed to comprehensively evaluate the advantages and 

disadvantages of take-over performance. 

For the takeover response time, the results show a significant positive correlation with the 

maximum lateral offset and a significant negative correlation with the minimum collision time. 

There is a negative correlation between the standard deviation of steering wheel rotation rate and 

the change percentage of average speed, which reflects the driver's handling stability. The two 

strongest correlation coefficients in the output results appear in the minimum collision time index, 

which has a negative correlation with the standard deviation of steering wheel rotation rate and the 

maximum lateral offset, as shown in Table 3. 
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Table 3: Correlation of indicators 

 
Maximum 

lateral offset 

Standard deviation of 

steering Velocity 

Per_Speed 

Change 
Min_CT 

Takeover response time 0.249* 0.126 -0.042 -0.303** 

Maximum lateral offset  0.148 -0.123 -0.398*** 

Standard deviation of steering 

Velocity 
  -0.309** -0.457*** 

Per_Speed Change    0.194 

In other words, after we understand what happens in the takeover process through specific 

takeover indicators, we also need a comprehensive indicator of takeover performance to 

systematically and objectively rate takeovers. In this study, the weight of each indicator was 

determined through PCA(principal component analysis), and then the multiple indicators reflecting 

different characteristics of the takeover were weighted and summed up to obtain a comprehensive 

Takeover_Performance index. 

First, the method is used to standardize the data, first determine the positive and negative 

direction of the index (the smaller or larger the index is, the better the performance), and then 

calculate the standardized index by the formula. The standardization processing here makes all 

index data turn into positive, that is, for any standardized data, the higher the value, the better the 

performance. 

For positive indicators: 

Si =
Xi−minX

maxX−minX
                            (2) 

For negative indicators: 

Si =
maxX−Xi

maxX−minX
                             (3) 

Where Si is standardized data, Xi is original data. 

Principal component analysis reconstructs a group of unrelated principal component variables 

through linear combination after dimensionality reduction, namely: 

{

F1 = a11S1 + a21S2 + ⋯ +an1Sn

F2 = a12S1 + a22S2 + ⋯ +an2Sn

…
  Fm = a1mS1 + a2mS2 + ⋯ +anmSn

                  (4) 

Where F1, F2,…, Fm is m principal components, aij is the coefficient in linear combination. 

Among them: 

=     1,2, ,
ij

ij

j

f
a j m


 …                         (5) 

Where fij is the number of factor loads, λj is the corresponding eigenvalue of the Jth principal 

component. 

Thus, it can be determined that the coefficient of each index in the comprehensive scoring model 

is: 

1

1

=     1, 2, ,

m

ij j

j

i m

j

j

a V

W j m

V










…                          (6) 
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Where, Vj is the variance contribution rate of the Jth principal component. 

Finally, the coefficients of each standardized index in the comprehensive scoring model are 

normalized to obtain the weight coefficient wi（i=1,2…,n） 

The range of the comprehensive index (Takeover_Performance) was [0,1], and the closer the 

value was to 1, the better the takeover performance was. The final formula is as follows: 

Takeover_Performance=0.24* S_Takeover_RT + 0.22* S_Max_lateral_offset +0.07* 

S_steeringVelocity_std + 0.2 * S_Per_speedChange + 0.27 * S_Min_TTC. 

4. Conclusions 

The results of this study provide a better evaluation of the driver's driving state and subsequent 

takeover quality in the process of conditional autonomous driving. When the driver's task changes 

from operation to surveillance, the eye movement behavior survey can better help expand the 

understanding of driver takeover behavior. Therefore, this paper has the following implications for 

the analysis of eye movement parameters: fixation and saccade indicators can be used to reversely 

infer the event types encountered by vehicles; drivers need to interpret the current scene information 

and identify event features more deeply through fixation. At the same time, we obtained a more 

reasonable index to judge the quality of the nozzle through the analysis of various reaction time and 

vehicle data. However, due to time and other reasons, our data processing is not in-depth enough, 

and we have not successfully connected the eye movement data and takeover quality reasonably. 

We expect to integrate the eye movement data and takeover quality in the future to obtain the 

relationship between the two. 

Application Prospect 

A series of previous studies have shown that self-driving cars are beneficial to society, drivers 

and pedestrians, and the accident rate of self-driving cars can be reduced to almost zero. The results 

provided by this study provide new insights into driver takeover performance and eye movement 

behavior during conditional autonomous driving. Participants' eye movement behavior before 

triggering a takeover requests can be used to predict their performance, and it is even hoped to be 

used to evaluate the safety of the subsequent takeover control loops. In the future, perhaps the 

analysis of eye-movement behavior data will become a reliable way for efficient cooperation and 

"mutual understanding" between autonomous vehicles and drivers. 

References 

[1] Hu Xinghua; Zheng Mintanyu. Research Progress and Prospects of Vehicle Driving Behavior Prediction [J]. World 

Electric Vehicle Journal, 2021. 

[2] Ziyan Chen; Shiguo Liu. China's self-driving car legislation study [J]. Computer Law & Security Review, 2021. 

[3] Yang J, Coughlin J F. In-vehicle technology for self-driving cars: Advantages and challenges for aging drivers [J]. 

International Journal of Automotive Technology, 2014, 15(02):333–340. 

[4] Kim H S, Yoon S H, Kim M J, et al. Deriving future user experiences in autonomous vehicle [C]. New York: 

Association for Computing Machinery, 2015:112–117. 

[5] Ive H P, Sirkin D, Miller D, et al. “Don’t make me turn this seat around!” Driver and passenger activities and 

positions in autonomous cars [C]. New York: Association for Computing Machinery, 2015:50-55. 

[6] Chiara Lucifora; Giorgio Mario Grasso; Pietro Perconti; Alessio Plebe Moral reasoning and automatic risk 

reaction during driving [J]. Cognition, Technology & Work, 2021. 

[7] Helen E. Monkhouse; Ibrahim Habli; John McDermid an enhanced vehicle control model for assessing highly 

automated driving safety [J]. Reliability Engineering & System Safety, 2020. 

[8] Lentin Joseph; Amit Kumar. Mondal Autonomous Driving and Advanced Driver-Assistance Systems (ADAS): 

Applications, Development, Legal Issues, and Testing [B]. 2021. 

[9] Francesco Bella, Roberta Russo. A Collision Warning System for rear-end collision: a driving simulator study [J]. 

Procedia - Social and Behavioral Sciences, 2011, 20(2011):676-686. 

29

https://schlr.cnki.net/Detail/index/GARJ2021_1/SJMDC2AC4E68DEE89D90896C07B5FAA9B42D
https://schlr.cnki.net/Detail/index/GARJ2021_1/SJES2D9E46753D51A32D25D45ED1EFFF186D
https://schlr.cnki.net/Detail/index/GARJ2021_1/SSJD8F033676875F93A84788C5A871B1D98F
https://schlr.cnki.net/Detail/index/GARJ2021_1/SSJD8F033676875F93A84788C5A871B1D98F
https://schlr.cnki.net/Detail/index/GARJ2020/SJESF7AFB44D5D10E59BD6C9D204E96C87AA
https://schlr.cnki.net/Detail/index/GARJ2020/SJESF7AFB44D5D10E59BD6C9D204E96C87AA
https://schlr.cnki.net/Detail/index/GARBLAST/SBRCB97AB3309DABC57FF73C2F9AA265DDF7
https://schlr.cnki.net/Detail/index/GARBLAST/SBRCB97AB3309DABC57FF73C2F9AA265DDF7


[10] Moritz Körber, Christian Gold, David Lechner, et al. The influence of age on the take-over of vehicle control in 

highly automated driving [J]. Transportation Research Part F:Traffic Psychology and Behaviour,2016,39(2016):19-32. 

[11] Zeeb K, Buchner A, Schrauf M. What determines the take-over time? An integrated model approach of driver 

take-over after automated driving [J]. Accident Analysis and Prevention, 2015, 78(2015):212–221. 

[12] Anna Feldhütter, Gold C, Schneider S, et al. How the duration of automated driving influences take-over 

performance and gaze behaviour [C]. Berlin: Springer, 2016, 309-318. 

30




