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Abstract: As the name implies, bulk phase nanobubbles exist under bulk phase conditions. 

Bulk phase here generally refers to liquid phase environment, and nano bubbles refer to 

bubbles with a diameter less than 1 micron. It has unique physical properties such as small 

size and large relative surface area, and has broad application prospects in many fields, such 

as agriculture, surface cleaning, water purification, ore flotation, drug transportation and so 

on. The nanobubbles suspended in the liquid are in Brownian motion under the action of 

thermodynamics, resulting in a nearly spherical structure, which makes it difficult to directly 

detect many physical properties. There have been many theoretical models about the 

physical mechanism of nanobubble stability, such as linear tension model, dynamic 

equilibrium theory, high density theory and magazine theory. But these theories explain only 

part of the results, so they are not universally accepted. Molecular dynamics simulation 

method can be used to obtain the dynamic process of bulk phase nanobubbles at the scale of 

100 nanometers. This method can prove the stable dynamic process of bulk phase bubbles, 

which is helpful to explain some physical properties of nanobubbles and explain the reason 

why they can be stabilized for a long time. We use gas phase equilibrium and 

thermodynamic methods to investigate whether the nanobubbles are stable under the 

conditions of temperature and pressure changes, and found that no matter the temperature 

or pressure changes, the impact on it is minimal.

1. Introduction 

1.1. Background 

Bulk nanobubbles, as the name implies, are nanobubbles that exist under bulk conditions. The bulk 

here generally refers to a liquid environment, and nanobubbles refer to bubbles with a diameter less 

than 1 micron [1]. It has unique physical properties such as small size and large relative surface area, 

and has broad application prospects in many fields, such as agriculture, surface cleaning, water 

purification, ore flotation, drug transportation, etc. The nanobubbles suspended in the liquid are in a 

state of Brownian motion under the action of thermodynamics, resulting in a nearly spherical structure, 

which makes it difficult to directly detect many physical properties. Regarding the physical 

mechanism of the stability of nanobubbles [2-3], there have been many theoretical models, such as 

linear tension model, dynamic equilibrium theory, high density theory, and magazine theory. 

But these theories can only explain part of the experimental results, so they cannot be accepted by 
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everyone. The molecular dynamics simulation method can be used to obtain the dynamic process of 

bulk nanobubbles at the 100-nanometer scale. This method can prove the stable dynamics of bulk 

bubbles, help explain some of the physical properties of nanobubbles and explain their long-term 

stability reason. 

1.2. Restatement of the Problem 

In order to solve those problems, we will proceed as follows: 

 Question 1 According to the data, through the analysis of a large amount of data, it is judged 

whether the density distribution of the coarse-grained particles at the interface is uniform. 

 Question 2 By constructing a suitable mathematical model, test the relationship between the 

density distribution of coarse-grained particles in different regions with time and the correlation 

between the density of different regions. 

 Question 3 According to data analysis and appropriate model selection, determine the 

relationship between the volume of the interface formed by coarse-grained particles and the change 

over time. 

 Question 4 Consult a large number of related documents to further explore the effect of 

changing temperature and pressure on bubble size 

1.3. Our Work 

1) Import the data into MATLAB, build each group of data in 3D coordinates, conduct preliminary 

analysis on the data and make basic conjecture. 

2) It is concluded that in x, Y and Z coordinate directions, the number of coarse-grained particles 

conforms to normal distribution. According to our model, it is concluded that the particles are 

uniformly distributed on a plane approximately as a sphere in space. 

3) Make statistics on the number of particles in the eight regions divided, and get the change of 

density of each region in space with time. 

4) Calculate the relation between volume and time of each group of data and establish a model to 

prove its correlation. 

5) Search a large number of materials and literature, and through the analysis of relevant literature 

[4-7], use the model to find out the relationship between bubble volume and temperature and pressure, 

and conduct data processing. 

2. Assumptions and Justification 

To simplify the problem and make it convenient for us to simulate real-life conditions, we make 

the following basic assumptions, each of which is properly justified. 

 Assuming that all data sources are reliable and the data is true and accurate. If the data 

source is unreliable and the data is not true and accurate, our investigation will be meaningless. 

 Assuming that all data sources are reliable and the data is true and accurate. If you 

consider bulk nanobubbles from a microscopic point of view, many elements and limitations need to 

be considered. Our existing tools cannot reach this level. 

 Assuming that coordinate data after the order of 10−10 has no effect on the model. If the 

coordinate data after the order of 10−10 is not considered, the graphics formed by the interface can 

be regarded as a standard ball. 

 Assuming that the volume of the four water molecules model has no effect on the bubble 

size. If the influence of the volume of the four water molecules model on the bubble size is considered, 

the forces and gaps between the water molecules also need to be considered, which will greatly 
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increase the workload. For simple analysis, it is not considered. 

 Assuming that the gas composition inside the bubble as a single-component ideal gas. 

 Assumed that the influence of water vapor inside the bubble on the model is ignored. 

3. Notations 

Table 1: Main parameters 

Symbols Description Unit 

T Temperature ℃,K 

P Pressure pa 

V Volume of a single bubble nm3 

V Gas chemical potential J 

𝑘𝐻 Reduced Henry Coefficient Dimensionless 

𝑘𝐵 Boltzmann constant Dimensionless 

R Gas constant Dimensionless 

Main parameters are shown in Table 1.Where we define the main parameters while specific value 

of those parameters will be given later 

4. Model and Results 

4.1. Analysis and Processing of Raw Data 

We import the given coordinate data at 0ns into MATLAB, establish a three-dimensional 

coordinate system, and express the coordinates of each point in three-dimensional coordinates. 

As shown in Figure 1. It can be seen intuitively that the coarse-grained particles at the interface form 

a sphere-like surface. 

 

Figure 1: Data coordinate graph at 0ns 

As shown in Figure 2, the three-dimensional spherical surface was observed from different 

viewing angles, and it was found that the pictures obtained from XOZ, XOY, and YOZ had the same 

shape and were all circular. Therefore, we take the maximum mean value in the xyz direction as the 

circle center coordinates. The coordinates of the center of the circle can be obtained by processing 

the data through Excel. Center coordinates: (59.98, 59.98, 59. 96). 
Based on 3.1 data analysis, we boldly guess that the density distribution of coarse-grained particles at the 

interface is uniform [8]. Import the given data into EXCEL, arrange the coordinates in ascending order, 
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and make the particle distribution density curve in the direction, as shown in Figure 3, Figure 4 and Figure 

5. We can intuitively see that X, Y, and Z all obey the normal distribution. 

 

Figure 2: Observe pictures from different perspectives 

 

Figure 3: X density distribution chart 
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Figure 4: Y density distribution chart 

 

Figure 5: Z density distribution chart 

By formula 

𝜇 =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1             (1) 

Without considering the influence of data below 10−10 on the model, the sample X mean value is 

60. 

By formula 

𝑆2 =
1

𝑛−1
∑ (𝑋𝑖 − 𝜇)2𝑛

𝑖=1             (2) 

Without considering the influence of data below 10−10 on the model, the standard deviation of 

the sample is obtained 28. 

From the above data, it can be seen that the particle distribution in the X-axis direction respectively 

obeys X～N(60,28). By repeating the above calculation process, we can get: Y～N (60,28),Z～
N(60,28), and their distribution can be denoted as: 

𝑓(𝑋) =
1

60√2𝜋
𝑒−

1
2(

𝑥−60
28 )2
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2
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            (4) 

That is, f(X, Y, Z) is a constant, and the overall probability is only related to the radius, which 

proves that the particles are uniformly distributed at the interface. 

In addition, since the densities of different regions are equal, there is no correlation. 

4.2. Time Series Stationarity Model 

4.2.1. Make a Guess 

In order to further explore the time-varying nature of the density of coarse-grained particles at the 

interface, we divided the area surrounded by the coarse-grained particle interface into eight quadrants, 

as shown in Figure 6. 

Establish a rectangular coordinate system with the ball centered as the coordinate origin, divide 

the ball into eight parts, and count the number of particles in each quadrant over time. The statistical 

results are shown in Figure 7, and the number of particles in each area is basically stable. 

Figure 7 is obtained through MATLAB statistical data and analysis. It can be seen from the figure 

that the number of particles in each quadrant fluctuates continuously around its mean value of 7380. 

Therefore, we boldly guess that the time series is stable, and the density distribution of coarse-grained 

particles in different regions does not vary. Change of time. 

Our time series data is generated based on the process of bulk nanobubble motion, and the motion 

process can be obtained by MATLAB simulation. After visualizing the data, it can be seen intuitively 

that the density of coarse-grained particles in different regions does not change with time, which 

further verifies our conjecture. 

4.2.2. Time Series Stationarity Proof 

Based on the proof of 3.2, the coordinates of the points generated on the interface during the 

movement of the nanobubbles are generated randomly, so our time series are generated by this 

random process. 

 

Figure 6: Area division 

60



1) From the question, it is assumed that the number of coarse-grained particles at different 

moments is conserved, so the average value E (𝑋𝑡) = 7380 is only related to the division of regions 

and does not change with time. 

2) The variance Var (𝑋𝑡) is obviously only related to whether the division of the region is accurate, 

and it is the amount that is determined not to change over time after the division of the region. 

3) Auto-covariance: 𝑐𝑜𝑣(𝑋𝑖 , 𝑋𝑖+𝑘) = E[(𝑋𝑖 −µ)(𝑋(𝑖+𝑘) −µ)] = E(𝑋𝑖𝑋𝑖+𝑘)−73802. Ob-viously, E 

(𝑋𝑖𝑋(𝑖+𝑘)) is the amount of data only related to k, and has nothing to do with time. Therefore, the 

autocovariance is a quantity that has nothing to do with time. 

From the above analysis combined with the conditions of the stationarity of the time series, it can 

be known that the time series generated by the random process is stable, that is, the density 

distribution of coarse-grained particles in different regions does not change with time. 

Generally, the time series of any variable can be described by the autoregressive process. But in 

the practice of model analysis, in order to simplify the workload of estimating parameters, we 

certainly hope that the parameters in the model are as few as possible. Therefore, it is necessary to 

introduce the moving average process MA (q). 

4.2.3. MA (Q) Model Stability 

The MA (q) model is as follows. 

𝑋𝑡 = ∑ 𝛽𝑖𝜀𝑡−𝑖
𝑞
𝑖=1             (5) 

It can be established as long as the following conditions are met. 

𝐸(𝑥𝑡) = 0, 𝑣𝑎𝑟(𝑥𝑡) = 𝛿2 ∑ 𝛽𝑖
2𝑞

𝑖=𝑠 , 𝑐𝑜𝑣(𝑥𝑡 , 𝑥𝑡−𝑠) = 𝛿2 ∑ 𝛽𝑖𝛽𝑖−𝑠
𝑞
𝑖=𝑠             (6) 

Since the sum of its series is a finite series sum to q, MA (q) is always stable. 

From Figure 7, we can see that the time series generated by substituting our data into the same 

proof that the random process is stable. 

 

Figure 7: Changes in the number of particles 
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5. The Relationship between the Interface Formed By Coarse-Grained Particles and the 

Volume Enclosed By Time 

5.1. Relationship Prediction 

The simulation of the motion diagram of bulk nanoparticles with time-varying images from 0 

to450 ns in the file figures/ movefig.gif shows that the interface of coarse-grained particles and the 

enclosed volume are basically the same over time. Therefore, we boldly predict that the interface 

formed by the granulated particles and the volume enclosed by it will not change over time. 

5.2. Predictive Test 

Based on the assumption of 2.1: the data after the order of10−10 will not be considered. Combining 

Figure 2 of 4.1, the interface formed by the coarse-grained particles can be deduced from the same 

diameter as a standard sphere. Take the maximum and minimum values in the X direction as a and d, 

respectively; the maximum and minimum values in the Y direction as b and e; and the maximum and 

minimum values on the Z axis as c and f, respectively. 

By formula 

𝐷 = [(𝑎 − 𝑑 + (𝑏 − 𝑒) + (𝑐 − 𝑓)]/3            (7) 

We can get D. 

By formula 

𝑉 = (𝜋𝐷2)/6            (8) 

We can get V. 

Mathematical analysis of the data by matlab obtains the variation of the boundary volume of the 

coarse-grained particle with time as shown in Figure 8. 

 

Figure 8: Graph of volume change over time 

It can be seen from the figure that the volume enclosed by the interface formed by coarse-grained 

particles is basically unchanged over time. The reason for the deviation is affected by the assumption 

3 of 2.1. 
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6. Explore the Effect of Changing Temperature and Pressure on Bubble Size 

6.1 Thermodynamic Analysis Process 

There is a phase equilibrium between the gas in the bubble and the dissolved gas in the solution, 

that is, the gas in the bubble dissolves into the circumferential solution, and the rate of gas evolution 

from the solution to the bubble reaches equilibrium. In thermodynamics, this balance needs to meet 

the following conditions: 

𝜇𝑔𝑎𝑠 = 𝜇𝑠𝑑𝑢𝑡𝑖𝑜𝑛            (9) 

That is, the chemical potential of the gas inside the bubble is equal to the chemical potential of the 

gas in the solution. Taking into account our assumptions, the above formula can be simplified to: 

𝜇𝑔𝑎𝑠(𝑇, 𝑃) = 𝜇𝜃 + 𝑅𝑇𝑙𝑛
𝑃

𝑃𝜃
            (10) 

In the above formula, T is the temperature, P is the pressure of the gas, and R is the gas constant. 

The chemical potential of the gas in the corresponding solution is: 

𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑇, 𝑃) = 𝜇𝜃(𝑇) + 𝑅𝑇𝑙𝑛
𝑃𝑥,𝐵

𝑃𝜃 + 𝑅𝑇𝑙𝑛(𝑥𝐵)             (11) 

In the above formula, kx is the Henry coefficient of the gas component, and xB is the mole fraction 

of the gas in the solution. The phase balance requirements (11) and (12) are equal. The two equations 

are subtracted and simplified: 

𝑅𝑇𝑙𝑛
𝑃

𝑘𝐵𝑘𝐵
= 0            (12) 

At the same time, the additional pressure of the curved liquid surface can also be expressed as, 

𝛥𝑃 =
𝛾

𝑟
= 0                      

𝑃 = 𝑃𝑎𝑡𝑚 +
𝛾

𝑟
= 0            (13) 

In the above formula, r represents the radius of curvature of the bubble, and r represents the 

interface energy of the gas-liquid interface. Substitute (14) into (13), 

𝑅𝑇𝑙𝑛 (
𝑃𝑎𝑡𝑚+2𝛾

𝑟𝑘𝐵𝑥𝐵
) = 0            (14) 

We call (13) and (15) the phase equilibrium equations of bubbles. When this equation is 

established, the bubble is in a static phase equilibrium state. When the left side of the equation is 

greater than 0, the chemical potential of the gas inside the gas pool is greater than the chemical 

potential of the gas in the solution, and the bubbles will dissolve. When the left side of the equation 

is less than 0, the chemical potential of the gas inside the bubble is less than the chemical potential of 

the gas in the solution, and the bubble will grow larger. In addition to the phase equilibrium, there is 

also an infiltration phenomenon at the position of the three-phase line where the bubble is in contact 

with the solution. This equilibrium can be described by Youngs equation. In the above equation, 𝛾𝑆𝐺 

represents the interface energy of the solid-gas interface, 𝛾𝐿𝐺represents the interface energy of the 

solid-liquid interface, and 𝜃𝑐represents the contact angle. The above equation is only valid for an 

ideal solid surface. For the actual solid surface, there is a contact angle hysteresis. At this time, the 

contact angle 𝜃𝑐is within a certain range, expressed as, 

cos(𝜃𝐴) <
𝛾𝑆𝐿−𝛾𝑆𝐺

𝛾𝐿𝐺
< cos (𝜃𝑅)            (15) 
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In the above formula,𝜃𝐴 is the advancing contact angle, and𝜃𝑅 is the receding contact angle. 

6.2 Prediction Based on Bubble Phase Equilibrium and Thermodynamic Analysis 

By consulting a large number of literatures [9-10], assuming that there is a bubble in phase 

equilibrium, the formula can be obtained: 

𝛥𝜇 = 𝑅𝑇𝑙𝑛 (
𝑃

𝑘𝑥
) = 0               (16) 

Differentiate P, T, and x respectively: 

𝜕𝜇

𝜕𝑃
> 0    

𝜕𝜇

𝜕𝑇
=

𝜕𝜇

𝜕𝑘

𝜕𝑘

𝑘𝑇
< 0   

𝜕𝜇

𝜕𝑥𝐵
< 0             (17) 

The second equation uses the chain rule. For gases, the Henry coefficient decreases with the 

temperature once and is less than zero. The derivative is used to judge the influence of the 

environment on the bubble balance: when the temperature increases and the pressure decreases, the 

effect on the nanobubbles is small. 

 

Figure 9: Graph of volume change over time 

What happens if the size of the bubble is reduced to the nanoscale? The literature studies the 

influence of temperature, pressure, and gas saturation in the solution on the stability of nanobubbles 

[11-12], but the author's position is different, and the final conclusion may be slightly different. As 

shown in Figure 9, the earliest research on the influence of temperature factors on bubble stability is 

the nanobubbles generated on mica, the height of which does not change much with temperature, but 

the lateral width has a large effect on temperature. This is slightly different from the results obtained 

on graphite, where the morphology of nanobubbles on graphite changes little with temperature. 

Although the results are slightly different, in general, temperature changes have little effect on the 

stability of nanobubbles, and the generated nanobubbles will not disappear due to temperature 

fluctuations. 

For the macroscopic bubbles of the solution, if the pressure of the environment is lowered, the 

bubbles will grow up immediately, which is exactly what we see when we open the lid of the soda 

64



bottle. But what will the result be for nanobubbles? Borkent et al. studied whether nanobubbles can 

serve as the nucleation center of micron-sized bubbles and grow into micron-sized bubbles under 

reduced pressure. The result is negative. Which means that the nanobubbles are still stable under the 

conditions of pressure fluctuations. In the end, can the nanobubbles be dissolved in the degassed 

solution? We have explored this problem in experiments; finally found that the nanobubbles are 

almost insoluble in the degassed solution. As shown in Table 2. 

Table 2: Experimental result 

External environment Parameter changes Influence Stability 

Temperature rise k decreases Bubble growth Little impact 

Reduce the pressure P decreases Bubble growth Little impact 

In addition, we found: 

 The dissolution kinetics of nanobubbles is determined by the very slow molecular exchange 

rate on the gas-liquid interface, rather than the mass transfer in the solution. 

 The substance inside the nanobubbles has a very high dynamic viscosity and is similar to a 

semi-solid substance. 

7. Conclusion 

7.1 Advantages of the model 

 The article has established a reasonable and scientific mathematical model based on a correct 

and clear analysis of the meaning of the question. 

 The model building method is simple and easy to implement and easy to implement. 

 The model has a reliable mathematical foundation through rigorous data analysis of MAT-LAB. 

7.2 Disadvantages of the model 

 All the data we obtain is a large amount of statistical data. If there is a certain error in the data, 

it will have a certain impact on the conjecture and analysis. 

 We make the assumption that the bubble is a standard spherical shell. In practice, the interface 

of the nano-bubble is approximately spherical. If the assumption is not true, the calculated volume 

will have a certain error 

 In the hypothesis, we make the assumption that the factors that affect the selection can fully 

reflect the size change of the bubble, and have no effect on the subsequent simulation, and the 

consideration of too few factors is inconsistent with the actual situation. 

 Because the size of coarse-grained particles is smaller than that of nanobubbles, we approximate 

the coarse-grained particles to one point, ignoring the impact of their size and various properties. If 

there is an impact, some changes in physical quantities will also be ignored by us. 
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