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Abstract: Vibration signals of rolling bearings are affected by changing operating conditions 

and environmental noise, so they are characterized by a high degree of complexity. Although 

deep learning fault diagnosis methods have achieved considerable success in practical 

applications, the high complexity characteristics are ignored. To address this issue, we 

propose a dual attention module and convolutional neural network (DAM-CNN) for rolling 

bearing fault diagnosis. In this method, we designed a dual-attention module (DAM) by 

using a channel-attention module and a spatial-attention module. DAM can recode feature 

information in channel and spatial dimensions, so as to achieve adaptive enhancement of 

effective network information and suppression of interference information. In addition, to 

enhance the extraction of long-range features of the convolutional network, we introduce the 

non-local feature extraction module. This module can significantly expand the perceptual 

field of convolutional operations and enhance the generalization ability of the network. By 

verifying the effectiveness of the method in CWRU datasets, the results show that the method 

in this paper not only has good noise immunity in strong noise environment, but also has 

high diagnostic accuracy and good generalization performance in different load condition 

domains. 

1. Introduction 

With the development of science and technology, rotating machinery began to develop towards 

automatic, efficient and intelligent trends. Rotating machinery is the most important part of 

mechanical equipment, which is widely used in various industries of national economy. As a key 

component in rotating machinery, the operating condition of rolling bearings directly affects the 

working process of the whole rotating machinery [1]. Therefore, it is essential to perform more 

accurate and intelligent fault diagnosis of rolling bearings[2]. 

The fault diagnosis of rolling bearings includes data acquisition, pre-processing, feature extraction 

and fault classification. Among them, fault classification plays a key role in the diagnosis result. The 

traditional fault diagnosis technology relies on experts and technicians to complete the manual feature 

extraction of the collected data, which cannot meet the requirements of the "big data era". With the 
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development of artificial intelligence technology, researchers have used support vector machine 

(SVM)[3] and BP neural network [4] for rolling bearing fault diagnosis. Although these methods have 

certain nonlinear fitting ability and achieve better results in the field of fault diagnosis, they reduce 

the accuracy of rolling bearing fault diagnosis because of their shallow network structure which is 

difficult to extract the deep feature information. 

In recent years, deep learning is a new research hotspot in the development of machine learning. 

It was proposed by Hinton et al [5] in 2006. Because of its powerful feature automatic extraction 

capability, deep learning has been applied to fault diagnosis by scholars. Convolutional neural 

network (CNN) in deep learning is a supervised deep learning algorithm. It enables end-to-end rolling 

bearing fault diagnosis without preprocessing the fault data. For example, Zhang et al [6] proposed a 

convolutional neural network model based on the Adaptive batch normalization (AdaBN) algorithm. 

Bearing fault diagnosis under variable operating conditions was achieved by self-feature extraction 

of convolutional neural networks. Lei et al [7] proposed a wind turbine fault diagnosis method based 

on long short-term memory (LSTM) network combined with convolutional neural network. Although 

the above methods achieve better fault diagnosis results in their respective fault diagnosis tasks and 

higher fault diagnosis accuracy compared with traditional diagnosis methods and machine learning 

methods, they are also limited by the following two factors. On the one hand, these methods do not 

use wide convolution for extracting features, while rolling bearings have different frequency 

variations of the same fault information in variable operating conditions, and the general 

convolutional networks cannot effectively extract these small fault features. On the other hand, the 

network structure of these methods is more complex, and the optimized network structure is not used 

to easily cause problems such as the network is difficult to train or even degrade. 

To address the above shortcomings, we propose a DAM-CNN method for fault diagnosis of rolling 

bearings in variable operating conditions. The contributions of this paper are summarized as follows: 

(1) A dual attention module is designed by using a channel attention module and a spatial attention 

module. This module can recode feature information in channel and spatial dimensions to achieve 

adaptive enhancement of network effective information and suppression of interference information. 

(2) To enhance the extraction of long-range features of the convolutional network, we introduce 

the nonlocal feature extraction module. This module can significantly expand the perceptual field of 

convolutional operations and enhance the generalization ability of the network model. 

(3) Experimental validation is performed by using CWRU datasets. Experiments on the CWRU 

dataset show that the method has good noise immunity and generalization performance. 

2. Theoretical background 

Convolutional neural network (CNN) is a feed-forward neural network and it has a powerful 

feature extraction capability automatically. CNN extracts deep features from the input data by 

constructing multiple convolutional kernels, and uses a down-sampling operation to achieve a 

reduced input dimensionality[8]. 

2.1. Convolutional layers 

The convolutional layer performs feature extraction on the input by using convolutional kernels. 

Each element of the convolution kernel contains a weight factor and a deviation. The specific formula 

can be described as: 
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where the input data ,

l

i jX  is the thl  feature value of the thi  feature map in the thj  layer of the 

network, L  is the convolution kernel size, ,

l

i jw  is the weight coefficient, b  is the deviation value, 

and  f  is the activation function. 

2.2. Batch standardization (BN) 

Batch normalization is a way to standardize the data in a network model, thus speeding up the 

training of the network model. Batch normalization also preserves the expressiveness of the original 

data. The batch normalization can be described as follows: 
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where N  is the number of small batches of data, ix  is the thi  input,   and 2  are the mean 

and variance of the small batches of data, respectively.   denotes a constant close to 0 but greater 

than 0, ix  is the result of data normalization,   and   are the parameters that the network can 

learn, and iy  denotes the thi  output of the data after BN. 

2.3. Activation function 

Both convolution and deconvolution are linear operations, however, for vibrating signals with high 

complexity, linear relations cannot extract enough feature information. Therefore, an activation 

function with nonlinear learning capability should be added after the convolution operation. We 

choose Leak-ReLU as the activation function. Unlike ReLU, Leak-ReLU does not set the negative 

value to zero and does not cause huge information waste. The specific formula can be described as: 
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where x  is the input signal,   is the leakage. 

3. The method DAM-CNN proposed in this paper 

In this section, we introduce each module of the proposed method. Then, the whole framework of 

the proposed method is introduced. 

3.1. Dual attention module 

In order to further extract the features of the convolutional flow, we propose the dual attention 

module (DAM). DAM consists of a channel attention module and a spatial attention module. Its 

structure of DAM is shown in Figure 1. In this module, first, we perform dimensional compression 

by 1×1 convolution. 1×1 convolution can improve the feature extraction ability of the network 

without increasing the number of network parameters. Then, we connect channel attention and spatial 
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attention in parallel. Channel attention can focus on the information in the channel dimension, while 

spatial attention focuses on the information in the spatial dimension. By using channel attention and 

spatial attention, we can achieve feature re-calibration of the convolutional stream in both space and 

channel. Finally, we use the Concat operation to stitch the output of the attention mechanism and 

extract global contextual information by 1×1 convolution. Besides, the DAM also uses residual 

connectivity. The residual connection not only makes the DAM better inserted into the network, but 

also prevents overfitting when the network is back-propagated. 
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Figure 1: Dual attention module structure diagram 

3.2. Non-local feature extraction module 

In order to capture the length dependence of convolutional neural networks, Wang et al [9] 

proposed a nonlocal feature extraction method. The structure diagram of the nonlocal feature 

extraction method is shown in Figure 2. 
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Figure 2: Non-local feature extraction module structure diagram 

As can be seen from Figure 2, the non-local feature extraction module can be described as: 

 [ , , ] [ , , ] [ , , ]Z W H C X W H C Y W H C     (7) 

where [ , , ]Z W H C  is the output feature map of the nonlocal operation, [ , , ]X W H C  is the input 

feature map, and [ , , ]Y W H C    is the result of the nonlocal feature operation. Y  can be described as: 

 [ , , ] ( ( ))SY W H C Conv Q Conv X      (8) 

 1 2( ( ) ( ))SQ softmax R X R X   (9) 

where ( )softmax  is the normalized exponential function, SQ  is the global information of the 

input feature mapping, 1( )R X  and 2 ( )R X  are the results of the convolution operation. 
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3.3. The proposed method in this paper 

In order to solve the problem under strong noise and cross-domain conditions, a fault diagnosis 

method of DAM-CNN is proposed in this paper. It is shown in Figure 3. The method uses CNN to 

extract features from the input data, while employing dual attention for feature attention in spatial 

and channel dimensions, and a non-local feature extraction module for feature capture at long 

distances. Finally, fault classification is performed by cross-entropy damage function. The method 

takes the original one-dimensional vibration signal as input and does not rely on manual feature 

extraction and expert knowledge at all, thus making maximum use of the convolutional neural 

network learning capability. 
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Figure 3: DAM-CNN network structure diagram 

4. Experimental results and analysis 

To evaluate the fault diagnosis performance of DAM-CNN, we conduct rolling bearing fault 

diagnosis experiments by using the Case Western Reserve University (CWRU) bearing dataset We 

validate the method in terms of noise immunity, generalization, and fault diagnosis capability under 

cross-domain. All simulation experiments are done in the framework of deep learning Tensorflow. 

4.1. Case 1 

4.1.1 Dataset description 

Table 1: Description of CWRU dataset 

Fault type Fault size(in) Load (HP) Training Testing Class labels 

Ball 0.007 0,1,2 150 50 0 

Inner race 0.007 0,1,2 150 50 1 

Outer race6 0.007 0,1,2 150 50 2 

Ball 0.014 0,1,2 150 50 3 

Inner race 0.014 0,1,2 150 50 4 

Outer race6 0.014 0,1,2 150 50 5 

Ball 0.021 0,1,2 150 50 6 

Inner race 0.021 0,1,2 150 50 7 

Outer race6 0.021 0,1,2 150 50 8 

Ball 0.028 0,1,2 150 50 9 

Inner race 0.028 0,1,2 150 50 10 

Normal - 0,1,2 150 50 11 

The experimental data is based on the rolling bearing dataset from Case Western Reserve 

University (CWRU), USA. This dataset is widely used for rolling bearing fault diagnosis. The tested 

bearing type is SKF6205. In this paper, the drive-side data is used which has a sampling frequency of 
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12 KHz. This dataset was collected for acceleration datasets at speeds of 1797 r/min, 1772 r/min, 

1750 r/min and 1730r/min, corresponding to load states of 0HP, 1HP, 2HP and 3HP. The collected 

datasets were divided into 12 state labels according to different locations and the degree of damage, 

and the number of samples in each state label was approximately the same. The collected datasets 

were divided into training and test samples according to the ratio of 3:1, and the sampling points of 

each segment were set to 2048 points. The description of the experimental dataset is shown in Table 

1. 

4.1.2 Comparison method 

To verify the superior performance of the proposed method, we chose to compare it with advanced 

deep learning methods, including WDCNN[6], ResNet[10], MRSCNN[11], and MSDARN[2]. 

WDCNN uses wide convolution in the first layer, which can effectively suppress the interference of 

strong noise. ResNet uses residual connectivity, which can prevent the network from overfitting. 

MRSCNN combines multi-scale and residual shrinkage blocks, which can effectively remove 

redundant information from the network. MSDARN can dynamically adjust the weights of different 

convolutional layers to improve the feature learning ability of the network. 

4.1.3 Fault classification 

 
(a) WDCNN 

 
(b) MSDARN 

 
(c) MRSCNN 

 
(d) DAM-CNN 

Figure 4: 1HP dataset fault diagnosis results 

To verify the ability of DAM-CNN to identify faults, we quantified the diagnostic results of the 

1HP dataset in Table 1 by using the misclassification quantified confusion matrix. Figure 4 shows the 

misclassification quantified confusion matrix for the diagnostic results of WDCNN, MRSCNN, 

MSDARN, and DAM-CNN. As seen in Figure 4, WDCNN, MRSCNN, and MSDARN have 
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misclassified and confused faults with labels 5 and 6. Finally, it leads to a diagnostic accuracy of 

97.83% for WDCNN, 99.16% for MRSCNN, and 99.41% for MSDARN. However, the diagnostic 

accuracy of DAM-CNN is 100% without any misclassification. Therefore, DAM-CNN has a more 

superior diagnostic performance compared with other algorithms. 

4.1.4 Visualization of learning representations 

To further verify the ability of DAM-CNN adaptive feature extraction, we used the t-SNE method 

to analyze the adaptively extracted features and the original input data. t-SNE visualization results 

are shown in Figure 5. In Figure 5, the coordinates of each point indicate the location of the point in 

2D space, and different labels indicate different fault types. As can be seen in Figure 5, DAT-CNN is 

able to fully classify the 12 fault types in the FC layer for the datasets 0HP and 1HP. For dataset 2HP, 

although there is a misclassification of label 6 into label 5, all other faults can be clustered accurately. 

Therefore, DAM-CNN has a strong feature extraction capability and can accurately classify multiple 

faults. 

Label 0 Label 1 Label 2 Label 3 Label 4 Label 5

Label 6 Label 7 Label 8 Label 9 Label 10 Label 11  

 
(a) Input data visualization 

 
(b) 0HP visualization 

 
(c) 1HP visualization 

 
(d) 2HP visualization 

Figure 5: Visualization of learning features 

4.1.5 Performance under noise environment 

In this section, we discuss the diagnostic accuracy of the proposed method in a noisy environment. 

To simulate the noisy environment, we add Gaussian white noise to the test samples of CWRU for 

network performance verification[12]. The signal-to-noise ratio (SNR) is described as: 

 
10

ˆ ˆ10log ( )S NSNR P P  (10) 

where ˆ
SP  and ˆ

SP  denote the power of the original signal and the noise signal, respectively. 

We add -2dB, 0dB, 2dB, 4dB, 6dB and 8dB Gaussian white noise to the 2HP test samples. The 

diagnosis results of DAM-CNN in the noisy environment are shown in Table 2. As can be seen from 

Table 3, the fault diagnosis rate of DAM-CNN is 87.50% when the SNR is -2dB. WDCNN and 

ResNet networks are simpler and have insufficient feature extraction capability, resulting in a 

diagnosis accuracy rate lower than 80%. Although MRSCNN and MSDARN use advanced deep 
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learning techniques, the network structure is more complex resulting in 2.00% and 4.69% lower 

diagnostic accuracy than DAT-CNN, respectively.  

Table 2: Fault diagnosis results under noisy environment 

Algorithms Accuracy (%) 

 -2dB 0dB 2dB 4dB 6dB 8dB 

WDCNN 73.72±3.19 82.76±2.78 90.99±2.09 96.02±1.31 97.39±1.19 98.82±0.54 

ResNet 67.50±2.58 76.31±1.05 84.16±0.89 89.02±0.87 93.22±0.07 98.79±0.42 

MRSCNN 84.50±1.91 90.50±2.13 93.50±1.79 97.50±1.30 99.10±0.12 99.81±0.07 

MSDARN 82.81±1.39 90.73±0.71 94.75±0.64 98.10±0.26 98.88±0.30 99.10±0.13 

DAM-CNN 87.50±2.30 93.30±0.18 96.87±0.28 99.55±0.12 100.0±0.00 100.0±0.00 

4.1.6 Performance between different domains 

In the industrial field, rolling bearings are often faced with the problem of cross-domain. Therefore, 

it is necessary to conduct experimental studies on rolling bearings with cross-domain. In order to 

simulate the cross-domain variation, we use one of 0HP, 1HP and 2HP as training samples and the 

other three load datasets as test samples. The results of the cross-domain experiments are shown in 

Table 3. 

Table 3: Fault diagnosis results under different domains 

Algorithms Accuracy (%) 

 0HP-1HP 0HP-2HP 1HP-0HP 1HP-2HP 2HP-0HP 2HP-1HP 

WDCNN 93.23±2.07 90.56±3.54 94.76±0.37 98.32±0.09 87.15±2.57 95.20±1.31 

ResNet 94.36±0.20 95.97±1.27 94.15±1.99 96.39±2.26 92.29±1.19 93.05±2.05 

MRSCNN 93.30±1.76 94.42±1.03 95.35±0.06 98.39±0.47 93.77±0.14 98.02±0.09 

MSDARN 94.98±1.56 97.32±0.67 94.07±1.43 97.43±1.79 86.34±2.16 94.09±1.85 

DAM-CNN 97.32±1.07 99.77±0.22 96.15±0.74 99.10±0.09 94.10±0.26 98.43±0.21 

As can be seen from Table 3., the fault diagnosis accuracy of DAM-CNN is always better than the 

other four compared methods in different domain experiments. The diagnostic accuracy of DAM-

CNN is 94.10% when 2HP is used as the training set and 0HP is the test set. the diagnostic accuracy 

of MSDARN is 7.76% lower than that of DAM-CNN. 

5. Conclusion 

In this paper, a fault diagnosis network DAM-CNN is proposed for noisy environments, load 

variations and cross-domain conditions. DAM-CNN directly uses the raw vibration signal as the input 

to the diagnosis network. Then, feature extraction is performed by wide convolution. The wide 

convolution can extract the high-frequency interference information in the vibration signal, thus 

improving the network diagnosis accuracy. Then, a dual-attention module is implemented to 

adaptively enhance the effective information and suppress the interference information of the network. 

Finally, DAM-CNN is experimentally validated by using CWRU bearing datasets.  
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