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Abstract: Heat treatment is one of the essential technologies in industrial manufacturing, and 

carburization is one of the processes of heat-treatment technology. With the increase of the 

technological requirements of production, the optimization of carburizing technology is 

desired. However, most carburization mechanism models are derived from the material 

properties and the related physical principles, which are involved huge amounts of 

parameters. Some parameters (such as diffusion constant, thermal conductivity, interface 

transfer coefficient, etc.) are difficult to measure correctly, and this is an extremely 

unfavorable issue to cause the results of the mechanism model inaccurate. In this paper, a 

new method is raised to improve the carburization mechanism model. The function of the 

method is to reduce the error of the model results by combining the mechanism model and 

the multivariate linear regression model with a small amount of sample data. At last, the 

author of this paper will perform experiments to prove the correctness of the method.   

1. Introduction 

1.1. The applications of the mechanism model in heat-treatment 

Heat-treatment is a technology to change the internal structure of solid material by heating, heat 

preservation, and cooling, which is usually used to make the interior of the workpiece transfer to the 

expected structure and performance [1]. Carburization is a key process of heat-treatment, which is to 

heat the workpiece in the carbon potential medium and transfer the workpiece to an austenite state, 

then make the workpieces form an enriched carbon layer on the surface [2, 3]. After quenching and 

low-temperature tempering, the surface layer of the workpiece presents the characteristics of high 

hardness and wear resistance, and the center of the workpiece has still maintained the toughness and 

plasticity of low carbon steel [4].  

With the gradual increase in technology requirements, the predictions of carburized layer depth 

and carbon concentrations are necessary. Although the carburizing process models have been 

maturely researched, many scholars have carried out a variety of models to explore the relationship 

between the input variables and the effects of the materials after carburizing process [5–7]. However, 

most carburization mechanism models are derived from the material’s characteristics and the physical 

principles, which involved huge amounts of parameters. Some parameters (such as diffusion constant, 

thermal conductivity, interface transfer coefficient, etc.) are arduous to measure correctly, which is 
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an unfavorable issue to cause the results of the mechanism model inaccurate [5, 7]. Therefore, to 

ensure the accuracy of the model results, a new method is raised to improve the carburization 

mechanism model in this paper. The function of the method is to reduce the error of the model results 

by combining the mechanism model and the multivariate linear regression model with a small amount 

of sample data. 

1.2. The applications of machine learning in the carburization mechanism model 

Machine learning is a widely used prediction model. The features of the machine learning model 

are high accuracy, simple structure, high efficiency, strong robustness, and so on. Machine learning 

includes linear regression model, logical regression model, support vector machine model, k-nearest 

neighbor model, naive Bayes model, etc [8]. Among those models, the multivariate linear regression 

(MLR) model has been provided with the function of making the most accurate prediction by 

minimizing the model error [8, 9], which resolves the pain point of the workpiece carburization 

mechanism model. Therefore, the author of this paper uses the MLR model of machine learning as 

the basis to explore the method of optimizing the carburization mechanism model. 

2. Experiment set up and model 

2.1. Materials, parameters, and Experiment set up 

The materials of workpieces for carburizing process are generally low carbon steel or low carbon 

alloy steel (carbon concentration is less than 0.25%). The material composition parameters used in 

the experiments are shown in Appendix A. 

2.1.1. Process parameters set up 

The device parameters set up: 

Time of carburizing process (t): 8 hours 

The temperature of carburizing process (T): 850 920 950 ℃ 

0Carburizing potential (𝐶𝑝): 1.2% 

Interface transfer coefficient [4]: 

𝛽 = 0.437 ∗ e(−
79953

𝑅𝑇
)
                                                            (1) 

In the equation, R is the ideal gas constant (𝑅 = 8.314 J/k ∗ mol), and T is the temperature of the 

carburizing process (K). 

Diffusion coefficient [4]: 

𝐷 = 𝐷𝑜 ∗ 𝑒
(−

𝑄

𝑅𝑇
)
                                                                (2) 

In the equation, 𝐷𝑜 is the Diffusion constant (𝐷𝑜 = 16.2 mm
2/𝑠 in austenite), and Q is the Diffusion 

activation energy of carbon (𝑄 = 137800 J/mol). 

2.1.2. Experiment set up 

Carburizing experiments were carried out in professional heat-treatment equipment (Fengdong 

BBH-600-2R). The details of the equipment are shown in Table 1. The picture of the equipment is 

shown in Fig. 1. 
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Table 1: The details of the heat-treatment equipment 

Type BBH-600-2R 

Effective Dimensions (mm) 600*600*1200 

Treating Capacity (KG/Lot) 600 

Working Temperature 800-950 

Heating Power (KW) 90 

Gas Heating Power (KW) 150 

 

Figure 1: The picture of the heat-treatment equipment 

The experiments were performed 3 times, each time at a different temperature, as the 850 920 

950 ℃. A total of 33 different materials were prepared, and 30 cylindrical samples were made from 

each material. In every experiment, 10 cylindrical samples of each material are put inside the furnace 

to heat for 8 hours, then taken out and cut according to the cylindrical axis. After cutting, a heat 

treatment carburizing calibration analyzer (Huamin hm-bx-3g) was used to analyze the carbon 

concentration of the cross-section of the product and recorded the carbon concentration for each 

sample as experimental data. Fig.2 shows the sample for the carburizing experiments.  

After 3 experiments, a total of 990 number was recorded in a database, then divided the database 

into 10 sets. Among the 10 sets of data, 9 sets were used in machine learning for model optimization, 

and 1 set was used to verify the accuracy of model simulation results. 

 

Figure 2: The samples for the carburizing experiments. 
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2.2. The mechanism model of carburizing process 

2.2.1. The first boundary condition 

According to Fick's diffusion law, initial conditions, and the first boundary condition, the equation 

can be formed as [4], 

{

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
                                             𝑥 > 0, 𝑡 > 0      

𝐶(𝑥, 0) = 𝐶0                                    0 ≤ 𝑥 < ∞, 𝑡 = 0

𝐶𝑠 = 𝐶(0, 𝑡) = 𝐶𝑝                            𝑥 = 0, 0 < 𝑡 < ∞

                                       (3) 

In the equation, C is the carbon concentration (vol%). t is the carburizing time (s). x is the distance 

between the measuring position and the sample surface (mm). Cs is the carbon concentration on the 

surface of the product (vol%). CP is the carbon potential generated by the heat treatment equipment 

(vol%).  

According to equation (3), the analytical solution of the equation can be derived as follows: 

𝐶(𝑥, 𝑡) = 𝐶0 + (𝐶𝑝 − 𝐶0)𝑒𝑟𝑓𝑐(
𝑥

2√𝐷𝑡
)                                                 (4) 

2.2.2. The second boundary condition 

According to Fick's diffusion law, initial conditions, and the third boundary condition, the equation 

can be formed as [4], 

{
 
 

 
 
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
                                              𝑥 > 0, 𝑡 > 0    

𝐶(𝑥, 0) = 𝐶0                                   0 ≤ 𝑥 < ∞, 𝑡 = 0

𝐷 (
𝜕𝐶

𝜕𝑥
)
𝑥=0

= 𝛽(𝐶𝑠 − 𝐶𝑝)                     𝑥 = 0, 𝑡 > 0   

                                       (5) 

According to equation (5), the analytical solution of the equation can be derived as follows: 

𝐶(𝑥, 𝑡) = 𝐶0 + (𝐶𝑝 − 𝐶0) [𝑒𝑟𝑓𝑐(
𝑥

2√𝐷𝑡
) − exp (

𝛽𝑥−𝛽2𝑡

𝐷
) . 𝑒𝑟𝑓𝑐(

𝑥

2√𝐷𝑡
+ 𝛽√

𝑡

𝐷
)]                         (6) 

2.2.3. The combination of first, and third boundary conditions 

According to Fick's diffusion law, initial conditions and the combination of first and third 

boundary conditions, the equation can be formed as [4], 

{
 
 

 
 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
                                           𝑥 > 0, 𝑡 > 0    

𝐶(𝑥, 0) = 𝐶0                                   0 ≤ 𝑥 < ∞, 𝑡 = 0

𝐶𝑠 = 𝐶(0, 𝑡) = 𝐶𝑝                           𝑥 = 0, 0 < 𝑡 < ∞

𝐷 (
𝜕𝐶

𝜕𝑥
)
𝑥=0

= 𝛽(𝐶𝑠 − 𝐶𝑝)                    𝑥 = 0, 𝑡 > 0    

                                          (7) 

According to equation (7), the analytical solution of the equation can be derived as follows, 

𝐶(𝑥, 𝑡) = 𝐶0 + (𝐶𝑝 − 𝐶0)
𝐴√𝑡

1+𝐴√𝑡
𝑒𝑟𝑓𝑐(

𝑥

2√𝐷𝑡
)                                            (8) 

In the equation, 𝐴 = 𝛽sqrt(π/D). 
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2.3. The optimization of MLR to mechanism model 

2.3.1. The multivariate linear regression 

Linear regression explores the linear changes of the dependent variables with the change of the 

independent variables. Multivariate linear regression (MLR) is to explore the changes of dependent 

variables when multiple influencing factors exist as independent variables. Assuming 𝑦  is the 

dependent variable of MLR, and [𝑥1, 𝑥2, 𝑥3⋯⋯ , 𝑥𝑛] are the independent variables of MLR, the MLR 

is written as follows equation [9], 

𝑦𝑖 = 𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥2𝑖 + 𝑏3𝑥3𝑖⋯⋯𝑏𝑛𝑥𝑛𝑖 + 𝜇                                           (9) 

transfer the equation (10) into matrix form, 

[
 
 
 
 
𝑦1
𝑦2
𝑦3
⋮
𝑦𝑖 ]
 
 
 
 

=

[
 
 
 
 
1 𝑥11 ⋯ 𝑥𝑛1
1 𝑥12 ⋯ 𝑥𝑛2
1 𝑥13 ⋯ 𝑥𝑛3
 ⋮  ⋮   ⋯    ⋮  
1 𝑥1𝑖 ⋯ 𝑥𝑛𝑖 ]

 
 
 
 

[
 
 
 
 
𝑏0
𝑏1
𝑏2
⋮
𝑏𝑛]
 
 
 
 

+

[
 
 
 
 
𝜇0
𝜇1
𝜇2
⋮
𝜇𝑛]
 
 
 
 

                                              (10) 

to simplify the equation (11), 

𝑌 = 𝑋𝑏                                                                    (11) 

The coefficient 𝑏̂ can be estimated by the ordinary least square method, 

𝑏̂ = (𝑋′𝑋)−1𝑋′𝑌                                                              (12) 

Then the estimated value of the dependent variable 𝑌̂ can be obtained as the following equation: 

𝑌̂ =  𝑋𝑏̂                                                                    (13) 

2.3.2. The optimization of the mechanism model 

The optimization of MLR to carburizing mechanism model includes 7 steps, as shown in Fig.3, 

 

Figure 3: The optimization of MLR to mechanism model. 
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(1) Set the initial conditions and the factors of the model (which are the same as the independent 

variables of the MLR). Import those values into the mechanism model of carburizing process, then 

the carbon concentrations (𝑅𝑚) of the workpiece at the different depths to the surface are found. 

(2) Find the difference values 𝑒𝑘  between the experimental results and results found by the 

mechanism model. 

(3) Import the difference values 𝑒𝑘 into the equation [12] as the dependent variable of MLR (the 

parameter Y). 

(4) The input factors of the carburizing process are imported into the equation [12] as the parameter 

X, then the model coefficients 𝑏̂ are found. 

(5) The predicted difference values 𝑒𝑛 between the experimental results and carburizing process 

mechanism model are found by MLR, which is the parameter 𝑌̂ in the equation [13]. 

(6) Add 𝑒𝑛 to 𝑅𝑚 found in step (1), then repeat step (2) to (5) n times. In this research, a total of 9 

sets of experimental sample data are used for machine learning, thus the value of n is 9. 

(7) Until finishing the 9th recycle, the final results are obtained. The values of the results are 𝑅𝑚 +

𝑒𝑛. The physical meaning of the results is carbon concentrations (vol%) of samples predicted by the 

new model at different depths to the surface. 

2.4. Relative Error 

To find the difference between the predicted results and the experimental results, the relative errors 

should be calculated. In this experiment, the experimental results are provided as the exact solution, 

and the model predicted results are provided as the error solution. The calculation method of relative 

error is shown in the formula [14]. With the smaller relative error values, the results are more accurate. 

𝑅𝑒 = |
𝑎−𝑏

𝑎
|                                                                  (14) 

In this equation, a is the experimental results, and b is the predicted results. 

3. Discuss 

To simplify the experiment process, all the experiment were performed when t = 8, x = 0.7, CP = 

1.2%. When the surface carbon potential is 1.2% and the heating time is 8 hours, the carbon 

concentration in the workpiece is at 0.7mm depth to the surface of the workpiece.  

Figure 4 shows the experimental results of the experimental samples. The x-axis is the sample 

number of the material used (see Appendix A for details), and the y-axis is the percentage of carbon 

concentration (vol%) in the current position. 
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Figure 4: Experimental results 

3.1. The results found by the mechanism model 

Figure 5 shows the comparison between the mechanism model results and the experimental results. 

The x-axis is the sample numbers of the material used (see Appendix A for details), and the y-axis is 

the percentage of carbon concentration at the current position (vol%).  

 

Figure 5: Mechanism model results vs. Experimental results 

According to fig. 5, it can be observed that the trend of the simulation results and the experimental 

results is similar, but the error between the model results and the experimental results is large, 

especially the samples No. 10, No. 17, No. 28, etc. Samples No. 10, 17, and 28 are 16MnCrS5, 

20MnCr5, and 9SMn28, which are all made of Mn (manganese). The main characteristic of the 
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manganese-based alloy is keeping the austenite formed from high temperature to room temperature 

with a stable stance, however, it will increase the time needed to form austenite [10]. The diffusion 

coefficient calculated by equation (2) of the mechanism model is based on the diffusion constant of 

the metal in the austenite stage. When below 900 ℃, the austenite has not been formed from some 

materials, thus the errors of the mechanism model results are large. 

Meanwhile, Table 2 shows that with the increase in temperature, the error value can be 

significantly reduced. High temperature improves the transformation rate to austenite in metal [11], 

which effectively increases the accuracy of mechanism model simulation results. It can be seen that 

the low temperature (below 900 ℃) causes large errors in the mechanism model. 

Table 2: Relative errors in different temperature 

Temperature (℃) 850 920 950 

Relative error 0.28 0.14 0.1 

3.2. The results optimized by MLR 

Fig. 6 shows the comparison between the results optimized by MLR and the experimental results. 

The x-axis is the sample numbers of the material used, and the y-axis is the percentage of carbon 

concentration at the current position (vol%). 

 

Figure 6: Results optimized by the MLR vs. Experimental results 

From Figure 6, the results improved by introducing the MLR. Compared with the results obtained 

by using the mechanism model alone, the trends of optimized simulation results are closer to the 

experimental results. The relative errors of the MLR optimized model are shown in Table 3. 

Table 3: Results optimized by the MLR in different temperature 

Temperature (℃) 850 920 950 

Relative error 0.0606 0.0456 0.0479 

In addition, because of the self-learning ability of machine learning, with the increase in data 

sources, the predicted results should be more accurate with the increase in the cycle times. To verify 

the relative error value reduced by machine learning through the self-learning function, figure 7 shows 

the predicted results and the relative error values at the 1st, 3rd, 6th, 8th, and 9th cycle times. 
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Figure 7: Results optimized and Relative error vs. recycle times 

It can be seen from figure 7 that with the increase of the data set, the number of cycles in the model 

increases, and the relative error values can be effectively reduced. This indicated that by accumulating 

more data, the predicted results of the model are closer to the experimental results. Therefore, data 

accumulation has a positive effect on the optimization of the model. 

4. Conclusion 

In this paper, a method to optimize the carburizing process mechanism model using a multivariate 

linear regression model is proposed. Through experiments, the method is proven that it has a positive 

effect on improving the accuracy of predicted results. The characteristics of this method are as follow: 

(1) The model is obtained by optimizing the mechanism model of carburizing process. Compared 

to machine learning alone, fewer data samples are needed to achieve practical application. 

(2) With the increase of data, the model can significantly improve the accuracy of the results. The 

author of this paper will import this model into a web application, in which every user can upload 

more data for the model to further reduce the error value. 

(3) The model has no limitations on materials, and carbonizing process of all kinds of metal 

materials can be improved by this method. However, the effect of this method on different furnaces 

has not been verified by experiments. In the future, the author will perform relevant experiments on 

different furnaces through follow-up topics and projects. 
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Appendix A 

No. Materials %C %Si %Mn %Cr %Ni %Mo %N %AI %V %Cu %P %S %T 

1 13 NiCr 6 0.135 0.250 0.400 0.750 1.425 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

2 14 Ni 6 0.140 0.225 0.450 0.000 1.450 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

3 14 NiCr 10 0.135 0.250 0.550 0.750 2.500 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

4 14 NiCr 14 0.135 0.250 0.550 0.750 3.500 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

5 14 NiCr 18 0.135 0.250 0.550 1.100 4.500 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

6 15 CrNi 6 0.145 0.275 0.500 1.550 1.550 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

7 15 NiCr 6 4 1.500 0.250 0.800 1.090 1.450 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

8 16 CrMo 4 0.165 0.250 0.650 1.050 0.300 0.250 0.000 0.000 0.000 0.000 0.250 0.250 0.000 

9 16 MnCr 5 0.165 0.275 1.150 0.950 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

10 16 MnCrS 5 0.165 0.275 1.150 0.950 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

11 17 Cr 3 0.170 0.275 0.550 0.750 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

12 17 CrNiMo 6 0.165 0.275 0.500 1.650 1.550 3.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

13 18 CrNi 8 0.175 0.275 0.500 1.950 1.950 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

14 20 Cr 4 0.200 0.300 0.750 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

15 20 CrMoS 4 0.195 0.275 0.750 0.400 0.000 0.450 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

16 20 CrS 4 0.200 0.300 0.750 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

17 20 MnCr 5 0.195 0.275 1.250 1.150 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

18 20 MnCrS 5 0.195 0.275 0.125 1.150 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.028 0.000 

19 20 MnCr 4 0.195 0.275 0.750 0.400 0.000 0.450 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

20 20 CrMnMo 0.200 0.270 1.050 1.250 0.000 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

21 20 CrMnTi 0.205 0.270 0.950 1.150 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.070 

22 20 CrMo 0.205 0.270 0.550 0.950 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

23 21 MnCr 5 0.210 0.250 1.250 1.150 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.000 0.000 

24 21 NiCrMo 2 0.200 0.275 0.750 0.500 0.550 0.200 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

25 21 NiCrMoS 0.200 0.300 0.800 0.550 0.550 0.200 0.000 0.000 0.000 0.000 0.250 0.028 0.000 

26 22 CrMoS 3 5 0.215 0.300 0.850 0.850 0.000 0.450 0.000 0.000 0.000 0.000 0.025 0.028 0.000 

27 25 MoCrS 4 0.260 0.275 0.750 0.500 0.000 0.450 0.000 0.000 0.000 0.000 0.025 0.280 0.000 

28 9 SMn28 0.090 0.030 1.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.060 0.280 0.000 

29 C 10 0.100 0.250 0.450 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

20 C 15 0.150 0.250 0.450 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

31 Ck 15 0.150 0.250 0.450 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.000 

32 Cm 15 0.150 0.250 0.450 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.028 0.000 

33 Fe 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

54




