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Abstract: Fringe projection profiler (FPP) measures the geometry of the target surface by 

projecting the pre-modulated stripe map onto the surface, and then capture the phase map 

with a camera. However, the inaccurate exposure or the characteristics of the surface 

reflectance may influence the imaging quality of the phase map, leaving some over-exposure 

and under-exposure regions. Addressing to this problem, this paper propose to apply a neural 

network to complete the phase map. Firstly, we propose a synthetic dataset to simulate the 

phase map of the inaccurate exposure regions, based on a physical rendering model. After 

that, we implement a transformer neural network to complete the missing phase information. 

Experiments show that the proposed neural network can complete the missing information 

from its neighbouring information, and provide precise completion results.  

1. Introduction  

Fringe projection profiler (FPP) is a measurement approach that has been widely used in the 

industry [1] due to its accuracy and efficiency [2]. A typical framework of FPP is shown in Figure 1. 

The projector projects the pre-modulated pattern onto the target surface. After that, the stripe pattern 

(or the phase map) is presented on the surface. Through capturing the phase map with a camera and 

analysis it with a reconstruction algorithm, the depth map of the surface is obtained.  

Although being widely used in the industry, the precision and robustness of the FPP system is 

strongly affected by the surface characteristics, such as the material, the curvature and the reflectance. 

Especially for those surface with complex geometry and made of metal, as shown in Figure 1, the 

phase map may have a wide dynamic range. However, the dynamic range of a camera when specific 

parameters are given, is relatively low. Therefore, over-exposure and under-exposure happens in 

some regions, leaving missed information for the depth reconstruction algorithms. 

The community has recently introduced multi-exposure [3] and adaptive projection [5], [6] to 

improve the dynamic range of the camera, from the perspective of setting different projector and 

camera parameters and capture a group of images. Furthermore, these schemes extract the well-

measured features from different images under different projection-camera conditions. However, 

these schemes could be complex for implementation, and take significantly longer time for each 
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measurement instance. 

On the other hand, we have noticed the impressive achievements that deep learning has made [7] 

in areas such as computer vision and decision making. Specially, deep learning has made great 

success in image completion and produces realistic images. For example, Xie et al. [8] proposed an 

auto-encoder architecture based on CNN for image completion. Furthermore, transformer 

architectures are introduced to improve the high-level feature representation ability [9].  

This paper focuses to complete over-exposure regions and forms reliable results based on the deep 

learning approaches and avoiding the multi-exposure or adaptive-projection pipelines. Firstly, we 

propose a physical model which based rendering algorithm to generate a synthetic dataset for network 

training. After that, we apply the advanced image completion neural network to complete the over-

exposure regions based on the neighbour features. Finally, this pipeline is tested in experiments to 

validate its effectiveness.  

The paper is organized as follows. The second section reviews the advanced methods in projection 

methods and image completion neural networks. The third section details the dataset and completion 

model. The fourth section provides experiments to validate the proposed method. And the last section 

concludes this paper.  

 

Figure 1: Framework of a fringe projection profiler measurement system 

2. Related works  

2.1. Advance Projection Methods 

The robustness of FPP system is strongly affected by the surface geometry and reflectance. When 

a fixed pre-modulated pattern is projected onto the target surface, the dynamic range of the phase map 

could significantly exceed the dynamic range of a camera. Therefore, the community proposes 

advanced projection methods, including the multi-exposure and adaptive-projection to eliminate this 

problem.  

Multi-exposure is proposed to capture the information in the shiny regions [3]. This pipeline sets 

different projection intensity and exposure time to balance the over-exposure regions and the under-

exposure regions, capturing a series of images [6]. After that, a fusion algorithm is proposed to 

synthesis a single phase map from the raw images. And finally the 3D geometry of the target surface 

can be calculated accordingly. Furthermore, Tang et al. [4] proposes an optimization algorithm to 

figure out the best frequency and phase shift based on this pipeline. 

Adaptive projection is another method to eliminate the over-exposure problem. This method focus 

to optimize the pre-modulated pattern though adjusting the local intensity [5]. For example, for those 
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regions that tend to be over-exposure, the local intensity decreases in these regions, and vise versa. 

Li et al. [10] proposes an adaptive fringe-pattern projection (AFPP) framework following this pipeline. 

The framework includes three steps: determination of saturated camera pixels, determination of local 

MIGL adaptation, and generate the adaptive projection pattern. In the measurement pipeline, this 

pattern is projected onto the target surface. The phase map is captured and the depth map is 

reconstructed.  

Although the advanced projection methods can improve the image quality significantly, they 

follow the trail-and-adjust fashion that requires well-experienced technicians and complex algorithms. 

Therefore, we aim to design a fast and precise measurement procedure based on neural networks.  

2.2. Image Completion 

Image completion task which is also called image inpainting task has become an important 

research topic in computer vision. Image inpainting is a task that aims to fill the missing pixels or 

regions of images. Early works are based on diffusion-based methods [11]. They calculate the value 

of the missing pixels using their undamaged neighbour. For example, patch-based methods calculate 

the similarity of the patches using the hand-crafted distance metrics and use the patched to fill the 

missing regions. What's more, another traditional method like partial differential equation, 

interpolation methods and image statistics are also used in image inpainting. Interpolation methods 

are widely used in phase completion in the industry. However, traditional methods cannot extract 

high-level information from the images and thus the results of those methods are not robust enough. 

Recently, deep learning has achieved great success on the computer vision. Thanks to the 

development of GANs and VAEs, CNN-based methods has been widely used in image completion. 

Those methods generate semantic content of the missing regions by propagating the undamaged 

pixels. [12] first proposed context encoders for image inpainting based on the encoder-decoder 

architecture combining with GAN. Afterwards, more sophisticated networks like U-Net architecture 

based methods has been used in image inpainting. One common concern for generating high-quality 

is the ability of the network to aggregate local and global feature of the context. Therefore, dilated 

convolution was used to predict the missing regions. What's more, global and local discrimination 

was proposed to maintain the consistency of the local and global regions separately. [13] proposed 

contextual attention layer to extract feature from spatially distant undamaged regions. To deal with 

irregular masks with any shape, some work proposed to use partial convolutions [14] and gate 

convolutions [15] rather than use a standard convolution network. In addition to one-stage 

architecture, multi-stage generation was proposed to complete the images from coarse to fine. In those 

work, the first-stage network is responsible for generating coarse global content in the missing regions. 

The second-stage network then generate the local detailed structure based on the coarse global content. 

In general, CNN-based approaches fill the missing regions from their undamaged neighbouring 

visible pixels, which are limited by the locality of the convolutional feature extraction mechanism. In 

phase completion for FPP, the incomplete regions are large and continuous. Therefore, CNN-based 

methods may have limitations in FPP completion. 

Motivated by the great success of transformer architecture in natural language processing(NLP), 

many researchers applied transformer-based network in computer vision tasks recently. In image 

inpainting, Deng et al. proposed Contextual Transformer Network for improving the continuity of 

context. [16] proposed an decoder-encoder based transformer which name masked autoencoder. 

What's more, [9] develops an inpainting transformer for completing large missing regions, which is 

the state-of-the-art method up to now. 

37



 

3. Methods 

3.1. Dataset and Rendering Model  

Training neural networks requires a significantly large amount of training data while collecting 

enough paired and labelled data is difficult in real scenes. Therefore, we propose a FPP saturation-

exposure dataset based on physical rendering. 

We firstly set the simulation environment by giving the parameters such as the position of the 

projector and the camera, the light axis, and the pre-defined projection pattern, as shown in Figure 

2(a). For a certain depth map, we calculate the geometry stripe presented at the camera's sensor 

according to the shape of the target surface and the environment settings. After that, we introduce the 

physical model of rendering, i.e. the Lambertian reflection model and modulate the intensity of the 

stripe. Finally, we recognize the saturation regions and suppress them to the largest possible values.  

 

Figure 2: Simulation environment and light path diagram 

 

Figure 3: Synthetic process and the dataset 

3.1.1. Stripe generation with affine transformation 

When projecting the equally spaced stripes onto the target surface, the image captured by the 

camera is no longer equally spaced. This can be traced to the affine transformation during the imaging 

process and the geometric shape of the target surface. For most FPP systems, sinusoidal stripes are 

widely used. Therefore, we firstly set a equally spaced sinusoidal stripes on the object plane. Then 

we examine each point on the surface and distinguish which part of the stripes it belongs, through the 

affine transformation, as shown in Figure 2(b). Then we can obtain the pattern on the target surface. 
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Similar procedures are taken to get the pattern on the camera's plane, as shown in Figure 3(b). 

3.1.2. Intensity modulation with Lambertian model 

The image in Figure 3(b) seems not realistic. The main reason is that the above method only model 

the geometric light path without considering the intensity loss during the transmission. Therefore, we 

borrow the Lambertian reflection model to generate more realistic dataset.  

Lambertian model describes the reflection features of diffuse surfaces. It assumes that the 

reflection intensity is isotropic. The formula of Lambertian model is shown as follow: 

𝑓(𝜔𝑟 , 𝜔𝑖) =
𝑑𝐿𝑟

𝑑𝐸𝑖
=

𝜌

𝜋
                                             (1) 

where 𝜔𝑟, 𝜔𝑖 are the reflection angle and the incidence angle, 𝑓(. )is the BRDF function, 𝑑𝐿𝑟 is 

the emissivity of reflection, 𝑑𝐸𝑖 is the irradiance of incident light, 𝜌 is a constant related to the surface 

characteristics. 

Then we analysis the 𝑑𝐸𝑖 component, indicating to what extent the surface 𝑑𝑆 is lighted by the 

projector. We assume the projector is the only light source and the differential notation is not 

necessary. 

The main task is to find the stereo corner of 𝑑𝑆 with respect to the projector. As shown in Figure 

2(c), it can be expressed as the follow equation: 

dΩ =  
dScos i

lp2
                                                       (2) 

In order to solve the light intensity loss during the transmission, we consider the projector projects 

isotropic light, which means each unit stereo corner shares the same intensity. Therefore, 𝐸𝑖 ∝ 𝑑𝛺. 

Similar procedures can be taken for the reflection light. After calculating the intensity loss of each 

light path, we modulate the geometry stripe Figure 3(b) by multiplication and get the synthetic phase 

map Figure 3(c). 

3.1.3. Saturation suppression and dataset generation 

The pattern generated as Figure 3(c) has higher dynamic range than the camera. Therefore, the 

camera cannot capture the same image as Figure 3(c). We apply the saturation suppression to simulate 

the over-exposure of the camera.  

We set a threshold of the CCD unit in camera, then check each pixel in Figure 3(c) if it exceed the 

threshold. If it does, we record this pixel in the mask and suppress its value as the max threshold, and 

finally we get the training set Figure 3(d, e). 

During the generation of the dataset, we set sinusoidal surfaces as the depth maps. The depth map 

is the sum of two sinusoidal functions whose frequencies have 10 times difference.  

4. Experiment  

4.1. Experiment Settings  

We use our render model to generate the phase dataset as our train dataset. And we randomly mask 

the phase images with a intensity threshold. Our dataset contains more than 5000 paired incomplete-

complete synthetic phase images. Nearly 10 % of them are used as the test dataset and another 10% 

for validation dataset. We train our network using Adam optimizer and we set the learning rate as10−4 

with decay rate 0.9. In addition, the batch size is set to 8. We use Pytorch as our framework to train 

the model. And we train our network in 4 Nvidia A30 GPU with more than 200 epochs. 
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4.2. Completion Model  

Given an incomplete phase image, completion model aims to fill the incomplete regions with 

semantically accurate content. We designed a transformer based neural network to achieve phase 

completion for fringe projection profiler. Our network is inspired by [16] and [9], which is the 

simplification of [9] due to memory cost and forward speed considerations. The model has three parts: 

a convolution-based encoder, a transformer-based module with contextual attention, and a feed-

forward reconstruction module. 

Firstly, the model takes the incomplete phase image as input and gets the mask image by detecting 

the overexposure pixels with a threshold filter. Then, Convolution-based encoder is used to extract 

feature maps from the incomplete phase image and mask image. The convolution-based encoder 

contains three convolutional layers to down sample the inputs into 1/8 sized feature maps with 180 

channels. The feature maps are used as the tokens for transformer-based module. We then borrow the 

design of transformer-based module from [9] to process the feature map. The transformer-based 

module employs shifted windows operation guided by dynamical masks to achieve efficient self-

attention. This attention mechanism can help the network only pay attention to the valid pixels. The 

transformer-based module contains three transformer blocks and each block consists of three parts: a 

self-attention module guide by dynamic masks, a fully connected network and a multilayer perceptron. 

The last component is a feed-forward reconstruction module. This module aims to generate the 

complete phase image from the output of transformer-based module. We utilize a three layers 

convolutional layers to up sample the feature size into the original input image size. 

Since the network need to obtain accurate and reasonable results. At the training stage, we use the 

pixel-wise mean-square-error (MSE) as the loss function. Suppose the ground truth of the phase 

image is denoted as 𝑔𝑡 ∈ 𝑅𝑤×ℎ, and the output of the neural network is denoted as 𝑝𝑟𝑒𝑑 ∈ 𝑅𝑤×ℎ, 

where 𝑤  and ℎ  are the scale of the depth map. The loss function is expressed as the following 

equation: 

𝑙𝑜𝑠𝑠 = ∑ (𝑔𝑡𝑖,𝑗 − 𝑝𝑟𝑒𝑑𝑖,𝑗)
2

𝑖<𝑤,𝑗<ℎ

                                 (3) 

4.3. Phase map completion  

To validate our method, we compared our network with interpolation methods, including nearest 

interpolation and high-performance cubic interpolation. The cubic interpolation uses Qhull to 

triangulate the input data and construct Bezier polynomial on the triangle. Those interpolation 

methods are the most commonly used methods in phase map completion task in industry. 

To evaluate the methods mentioned above, we use Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity (SSIM) and mean-absolute-error (MAE) as the metric for comparation. The larger the 

PSNR and SSIM are, and the smaller the MAE is, indicating that the images are more similar to GT 

and the quality of the images are better. We complete the phase image in the test dataset using the 

above methods respectively and calculate their PSNR, SSIM and MAE. The results are shown in 

Table 1. 

It can be found that nearest interpolation method shows worst results in all metrics. What’s more, 

cubic interpolation method, as a conventional and high performance method, performs much better 

than nearest method. Our phase image completion network shows significant higher performance in 

all metrics, especially in PSNR metric and MAE metric. In SSIM metric, both cubic method and our 

network are very close to 1, which means that the generation images of both two methods are similar 

to the GT phase images. However, our method has 28% higher than cubic method in terms of  PSNR 
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and 63% lower than cubic method in terms of MAE. It shows that our deep learning based method 

can complete the damage phase images with higher quality and less error. 

Table 1: Statistics of the inpainting result 

Method PSNR SSIM MAE 

Nearest 24.0487 0.933 0.0207 

Cubic 36.370 0.985 0.0041 

Ours 46.041 0.989 0.0015 

 

Figure 4: Visualization of the inpainting results among different methods 

 

Figure 5: Partial enlargements of the results 

In addition to the analysis the metric, we visualize the results of different methods in Figure 4. We 

choose different masked scales phase images as the samples. When focusing the completed results in 

the missing regions, the nearest method significant underestimate the phase map at these regions. 

This is due to the fact that nearest method only uses neighbouring pixels for prediction. Figure 5 

shows partial enlargements of cubic method and our methods. Compared to the GT phase image, our 
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method has the same smooth and consistent intensity, while the results of cubic method are more 

noisy and slightly less intensity. 

In conclusion, the propose method shows high accuracy in the phase completion task which is 

significantly better than the traditional methods in the industry. 

5. Conclusions  

This paper proposes a completion method for the incomplete phase map captured  by FPP systems, 

based on neural networks. Firstly, we design a physical model based rendering algorithm to generate 

a synthetic dataset for network training. Then, we apply the advanced image completion neural 

network to complete the over-exposure regions based on the neighbour features. Finally, experiments 

are conducted to validate effectiveness of the proposed method. 
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