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Abstract: This article is concerned with the security control problem for discrete-time 
cyber-physical systems with both distributed state delay and time-varying input delay under 
false data injection attacks. Firstly, by introducing mixed delay and network attack, a 
polyhedron model is proposed to describe the nonlinear input caused by cyber attacks. 
Secondly, combined with a piecewise Lyapunov functional and some summation 
inequalities, sufficient conditions for the exponential stability of the closed-loop system are 
derived by using linear matrix inequality approach, and the design process of the security 
controller is given. Finally, an illustrative example is given to demonstrate the effectiveness 
of the proposed method. 

1. Introduction 

Cyber-physical systems (CPS) are the integration of physical processes, pervasive computing, 
efficient communication and network control to realize the effective control of physical processes 
[1]. In recent years, due to the progress of computers, network communication and related hardware 
technologies, CPS has developed rapidly and been widely used in the fields of transportation 
networks, smart grids, medical care and smart home [2]. However, due to the complexity of the 
system and the openness of communication protocols, CPS is vulnerable to malicious cyber attacks. 
Where, a false data injection (FDI) attack destroys the authenticity and integrity of information by 
tampering with the contents of data packets, which can affect the analysis and decision-making of 
the remote control centre. Therefore, it is a kind of network attack with a high threat to system 
security, which has attracted the extensive attention of scholars and achieved a series of meaningful 
research results [3]. 

Up to now, scholars have mainly studied FDI attacks from three aspects: attack detection, 
security control and state estimation [4]-[10]. Aiming at the state estimation problem of the system 
under cyber attacks, Liu et al. studied the state estimation problem of the real-time system under 
FDI attack by using the least square algorithm [4]. A detection method based on Kalman filter 
technology to detect the attacked network nodes is adopted in [5] and [6]. The above research 
realizes the detection of FDI attacks, but with the improvement of CPS complexity, simple attack 
detection is not enough to meet the needs of system security control. In order to maintain the 
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consistency of network cooperation systems attacked by FDI, Gusrialdi et al. proposed a design 
method of elastic cooperation control based on the concept of competitive interaction [7]. In 
addition, in order to satisfy the H-infinity control performance of the system, Wang et al. used the 
robust model predictive control method to realize the stabilization control for the time-varying 
system with FDI attacks [8]. Liu et al. studied the H-infinity load frequency control of the power 
system with FDI attacks [9]. However, most of the above literature only considers the design of 
control strategy for the systems under FDI attacks but ignores the decline of system performance 
caused by the inherent inducement factors of the network. For example, in many practical systems, 
due to network congestion, CPS inevitably has time delay in the process of information interaction, 
which often leads to the decline or even instability of CPS performance [11][12]. 

In response to the aforementioned discussion, this paper studies the security control of a class of 
CPS under cyber attacks and mixed time delays. 1) A piecewise Lyapunov function is used to 
eliminate the traditional time-delay constraint for FDI attacks input time-delay systems. 2) By 
introducing a distributed delay term, a multipatch model is proposed to handle the non-linear input 
caused by FDI attacks. 3) Sufficient conditions for asymptotic stability of CPS with cyber attack, 
state and input delay are established, and a security controller is designed. 

The rest of this article is organized as follows. Section 2 is the problem description and 
preliminaries. The sufficient conditions for the exponential stability of the closed-loop system are 
derived, and the safety controller is designed in Section 3. Section 4 provides a numerical example 
to illustrate the effectiveness of our results. Finally, Section 5 concludes the paper. 

Notations: Denotes that P  is a real, symmetric, and positive definite matrix. nR  is the n-
dimensional Euclidean space. Meanwhile, denoting   as the Euclidean norm for vectors. ( )lK  is the 
l-th row of the matrix K . I  is the identity matrix with compatible dimension. 

2. Problem Formulation 

Consider the following discrete-time cyber-physical systems with distributed state delays and 
fast-varying input delays under cyber attacks. 

( ) ( ) ( ) ( )( )
( ) ( ) ( ]

1
1

, ,0
d i ki

x k Ax k A x k i Bf u k

x k k k

µ τ

φ

+∞

=
 + = + − + −


= ∈ −∞

∑               (1) 

where ( ) nx k R∈  represents the system state; ( ) mu k R∈  represents control input; ( ) nk Rφ ∈  is the 
initial condition. A , dA  is a known constant matrix with appropriate digits. ( )1 ii

x k iµ+∞

=
−∑  represents 

distributed state delay item, kτ  indicates that the fast-varying input delay is satisfied 0 kτ τ≤ ≤  (τ  is 
a positive integer). ( )( )kf u k τ−  represents the nonlinear function caused by FDI attacks. 

Assumption 1. For a constant matrix U , FDI attack signals ( )( )kf u k τ−  and satisfy the 
following conditions: 

( )( ) ( )
22k kf u k Uu kτ τ− ≤ −  

where U  is a matrix given with appropriate dimensions, representing the upper bound of FDI 
attacks. 

Based on the above analysis, the following state feedback controller is constructed: 

( ) ( ) , 0u k Kx k k= ≥                    (2) 
where K  represents the controller gain matrices. 

For system (1), we make the following assumptions 

7



 

Assumption 2. For the given scalars ( )0 1,2,...i iµ > = , there is the positive scalar 0 1λ≤ ≤  such 
that the following inequality holds 

1 1 1 1 1 1

j l ji i i
i i ii j i l j i

µ λ µ λ µ λ+∞ +∞ +∞− − −
= = = = = =

< < < +∞∑ ∑ ∑ ∑ ∑ ∑
 

In addition, the delay dependent sector condition is introduced to deal with the actuator end 
nonlinearity caused by cyber attacks [13,14]. 

( )( ) ( )( ) ( ) 0T
k k kf u k H f u k Kx kτ τ τ − − − − ≤                 (3) 

According to condition (3) one has 

( )( ) ( )( ) ( ) 0T
k k kf u k H f u k Kx kτ τ τ − − − − − ≥                (4) 

According to condition (2) and (4). Therefore, the system (1) is equivalent to 

( ) ( ) ( ) ( ) ( )( )1
1 k d i ki

x k Ax k BKx k A x k i Bf u kτ µ τ+∞

=
+ = + − + − − −∑             (5) 

Then, we will introduce two lemmas to assist the follow-up work. 
Lemma 1 ([15]). Let mv R∈



 be such that 1v
∞
≤ , where 2 1mm m −=

 . Let the elements in mD  be 
labelled as ( )1,2m

iD i  ∈   , where mD  is a set of m m×  diagonal matrices with diagonal elements being 
either 1 or 0, and the function mf  be defined as ( )0 0mf =  and 

( )
( ) [ ]
( ) [ ]

1 1, , 1,

, , 1,
m i j m

m
m i j m

f i D D I j i
f i

f j D D I j i

 − + + ≠ ∀ ∈= 
+ = ∃ ∈

 

Then, for any mu R∈ , there holds ( ) { }co : 1,2m
i if u D u D v i−  ∈ + ∈  

 , where “ co ” denotes the convex 

hull and m m
iD R− ×∈  is defined as 12 ,m

m
i if

D e D−
− −= ⊗  with i iD I D− = − . 

Lemma 2 ([16], [17]). Let 0 n nZ R ×< ∈ , n
ix R∈  and the scalars ( )0 , 1,2,i i jµ ≥ = ⋅⋅⋅  be given. Then, 

we have 

( ) ( ) ( )( )1 1 1 1

T
T

i i i i i i i i i ii i i i
x Z x x Zxµ µ µ λ µ λ+∞ +∞ +∞ +∞−

= = = =
≤∑ ∑ ∑ ∑  

( ) ( ) ( )( )1 1 1 1 1 1 1 1

Tj j j j T
j i j i j i j i i ij i j i j i j i
x Z x x Zxµ µ µ λ µ λ+∞ +∞ +∞ +∞−

= = = = = = = =
≤∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

Let U , V  and W  be m n×  matrices and denote that 

( ) ( ) ( ) ( )1

1 1

k
i ji j i k j

k Ux k V x k i W x iϑ µ µ+∞ +∞ −

= = = −
+ − +∑ ∑ ∑               (6) 

Assumption 3. The following constraints are assumed: 

( ) [ )1, 0,v k k
∞
≤ ∈ +∞                    (7) 

According to Lemma 1, the nonlinearity ( )( )kf u k τ−  can be expressed as 

( )( ) ( ) ( )2

1

m
k

k s s k ss
f u k D u k D kτ ϖ τ ϑ−

=
 − = − + ∑                (8) 

Considering condition (4) and (5), the closed-loop system can be obtained as follows: 

( ) ( ) ( ){ ( ) ( ) ( )2

1 1
1

m
k
s s s k d s is i

x k A BD U x k BKD x k A BD V x k iϖ τ µ+∞− −
= =

+ = + + − + + −∑ ∑  
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( )} [ )1

1
, 0,k

s jj i k j
BD W x i kµ+∞ −−

= = −
+ ∈ +∞∑ ∑                (9) 

The purpose of this paper is to design the controller (2) to make the closed-loop system (9) 
exponentially stable. 

3. Main Results 

In order to facilitate the subsequent proof, the following piecewise augmented Lyapunov 
functional is proposed. 

( ) ( ) ( ) [ )1 2 , 0,V k V k V k k= + ∈ +∞                (10) 

where 

( ) ( ) ( ) ( ) ( )1 1kT k i T
i k

V k k P k x i Q x iα α α ατ
η η λ− − −

= −
= +∑  

( ) ( )1
11

k i k i T
jj i k j

x i S x iα αµ λ+∞ − − −
= = −

+∑ ∑  

( ) ( )1 1
21 1

l k k i T
ll j i k j

x i S x iα αµ λ+∞ − − −
= = = −

+∑ ∑ ∑  

( )( ) ( )1 1 1
1 2

k k i T
j i k j

y i R R y iα α ατ
τ λ− − − −

=− = +
+ +∑ ∑  

( ) ( )1 1
1 1

, 1, 2l k k i T
ll j i k j

y i Z y iα αµ λ α+∞ − − −
= = = −

+ =∑ ∑ ∑  

with 0Pα > , 0Qα > , 1 0Sα > , 2 0Sα > , 1 0Rα > , 2 0Rα > , 0Zα > , 10 1λ< ≤ , 2 1λ > , ( ) ( ) ( )1y k x k x k= + −  

and ( ) ( ) ( ) ( )1 1

1

Tk kT T T
ji k j i k

k x k x i x i
τ τ

η µ− +∞ −

= − = = −
 =  ∑ ∑ ∑ . 

For convenience of subsequent presentation, we define 

1k kτ τ +

 , 1k kτ τ τ− +

 , 1τ τ +
 , 

( ) ( ) ( ) ( )1
0 1 1

TkT T T
i ji j i k

k x k i x i y k
τ

ε µ µ+∞ +∞ −

= = = −
 − ∑ ∑ ∑ , 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 01 1 1 k

k k

Tk kT T T T T T
k ki k i k

k x k x k x k x i x i kτ

τ τ
ε τ τ τ ε−

= − = −
 − − ∑ ∑ 

 , 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 01
TkT T T T T T

k ki k
k x k x k x k x i k u k

τ
ε τ τ τ ε τ

= −
 − − − ∑ , 

( ) ( ) ( ) ( ) ( )3 01
TkT T T T

i k
k x k x k x i k

τ
ε τ τ ε

= −
 − ∑ , 

1

0 0 0 0 0 0
0 0 0 0

0 0 0 0 0
k k

I I
I I I I

I I I
τ τ

κ

 
 Γ − − 
 − 

 

 , 2

0 0 0 0 0 0 0
0 0 0 0

0 0 0 0 0 0 0
k k

I
I I I I

I
τ τ

 
 Γ − − 
  

 

 , 6

0 0 0 0 0
0 0 0 0
0 0 0 0 0

I
I I

I
τ

 
 Γ − 
  


 , 

3

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0

I I
I I

I I I
τ

κ

 
 Γ − 
 − 


 , 4

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0

I
I I

I
τ

 
 Γ − 
  


 , 5

0 0 0 0
0 0 0 0

0 0 0

I I
I I

I I I
τ

κ

 
 Γ − 
 − 


 , 
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1

0 0 0 0 0 0
0 2 0 0 0 0

0 0 0 0 0 0
0 0 2 0 0 0

I I
I I I

I I
I I I

− 
 − Φ
 −
 

− 

 , 3

0 0 0 0 0 0
0 0 0 0 0 0
I I

I I
− 

Φ  − 
 , [ ]7 0 0 0 0I IκΦ − , 

[ ]2 0 0 0 0 0 0I IκΦ − , [ ]5 0 0 0 0 0 0I IκΦ − , [ ]8 0 0I IτΦ − , 

4

0 0 0 0 0 0
0 2 0 0 0 0

I I
I I I

− 
Φ  − 
 , 6

0 0 0 0
2 0 0 0

I I
I I I

− 
Φ  − 
 , [ ]9 0 0I IκΦ − , 

1 2R R Rα α α+ , 1 2R R Rα α α+ , 
1 ii

κ µ+∞

=∑ , 
1

i
iiα ακ µ λ+∞ −

=∑
 , 

1 ii
iσ µ+∞

=∑ , 
1 1

j i
jj i ασ µ λ+∞ −

= =∑ ∑
 , 

( ) TSym T T T+ , 2
1

2

1
1

τλ
ϕ

λ
−
−

 , 
( )

( )

1
2 2 2

4 2
2

1

1

τλ τ λ λ
ϕ

λ

+− − +

−
 , 2 1 1

j i
jj iα αϕ µ λ+∞ −

= =∑ ∑ , 1
3 1 1 1

l j i
ll j iα αϕ µ λ+∞ −

= = =∑ ∑ ∑ . 

Theorem 1. Let the scalars 10 1λ< ≤ , 2 1λ > , 0v > , the integer 1k ≥  and the matrix K  be given. 
Assume that there exist matrices 3 30 n nP Rα

×< ∈ , 0 n nQ Rα
×< ∈ , 0 n n

jS Rα
×< ∈ , 0 n n

jR Rα
×< ∈ , 0 n nZ Rα

×< ∈ , 
( ), 1, 2. 1, 2n n

ijT R j iα×∈ = = , 2 2
1

n nM R ×∈ , 2
n nM R ×∈ , m nU R ×∈ , m nV R ×∈ , m nW R ×∈  and the diagonal matrices 

0 m nH R ×< ∈  such that, for 0,kτ τ= , 1, 2ms  ∀ ∈   , [ ]1,l m∀ ∈
 , the matrix inequalities 

1 1
1

1 1

0T

R M
M R
 

Λ > 
 



  , 21 2
2

2 21

0T

R M
M R
 

Λ > 
 

               (11) 

( ) ( ) ( )1 1 1 1 2 1 2 1 1 1 1 2 1 1 2 1 1 11 , 0T T T T
k s P P Z Sym Tττ λ λ σΞ Γ Γ − Γ Γ − Φ Λ Φ −Φ Φ + Σ +Ψ <

              (12) 

( ) ( ) ( )2 3 2 3 2 4 2 4 3 2 3 4 22 4 5 2 2 5 2 2 4 4 2 0T T T T TP P R Z Sym T Tτλ σΞ Γ Γ − Γ Γ +Φ Λ Φ +Φ Φ −Φ Φ + Σ + Σ +Ψ <



       (13) 

( ) ( )3 5 1 5 2 6 2 6 2 6 2 6 7 2 2 7 3 3 3 0T T T TP P R Z Sym Tτλ λ σΞ Γ Γ − Γ Γ − Φ Φ −Φ Φ + Σ +Ψ <
          (14) 

( )
1 2 1 2 1 2

1 2 1 2

, ,

1, 2 ,
j j

j j

P vP Q vQ S vS

R vR j Z vZ

≤ ≤ ≤


≤ = ≤
                (15) 

( ) ( )

( ) { }
2

4
1 4 1

1
0

,0

k
l

T
l

v N
l

N diag P

λ

λ

 
 Ξ ≥

+Ψ  
               (16) 

where ( ) ( ) ( ) ( )0l l l lN U W V =   , { }2
1 1 11 12 1 1 11 1 12 1 1 1,0, ,0,0, , ,diag Q S S Q S S R Zτκ σ λ κ σ τ σΨ = + + − − − +  , 

{ }2
2 2 21 22 2 2 21 2 22 2 2 2,0, ,0, , , ,0diag Q S S Q S S R Zτκ σ λ κ σ τ σΨ = + + − − − +  , 

{ }2
3 2 21 22 2 2 21 2 22 2 2 2, ,0, , ,diag Q S S Q S S R Zτκ σ λ κ σ τ σΨ = + + − − − +  , 

( ){ } ( ) ( )4 1 1 12 1 11 1 1 8 1 8 1 9 1 90, , , 2 1T Tdiag Q S S R Zτ τλ τ σ κ λ τ σΨ = + Φ Φ + Φ Φ   , 1 11 120 0 0 0 0 0
TT TT T T =   , 

3 31 320 0 0 0
TT TT T T =   , 2 21 220 0 0 0 0 0

TT TT T T =   , 4 0 0 0 0 0 0 0
TTT H =   , 

1 0 0   0s s d s sA BD U I BKD A BD V BD W I− − − Σ = + − + −  , [ ]2 0 0 0dA I BK A I BΣ = − − − , 

[ ]3 0 0 0dA I A IΣ = − − , [ ]4 0 0 0 0 0 0K IΣ = − , { }1 1 1,3R diag R R


 , { }2 2 2,3R diag R Rτ
τϕ



 , 
{ } ( ) ( )( )( )22 22 22 1,3 , 1 1 1 , 1R diag R Rτ

τ τϕ ϕ τ τ τ ϕ+ − >


   . 
Then, for any initial condition ( ) [ )0,kφ ∈ +∞  satisfying ( )0 1V ≤ , the closed-loop system (9) is 

exponentially stable. 
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Proof. Let ( ) ( ) ( )1V k V k V kα α α αλ∆ + − , by calculations and using Lemma 2, it is obtained 
( ) ( ) ( ) ( ) ( )1 1T TV k k P k k P kα α α αη η λ η η∆ ≤ + + −  

( )( ) ( ) ( )1 2
T Tx k Q S S x k y kα α ακ σ+ + + +  

( ) ( ) ( ) ( )2 TR Z y k x k Q x kτ
α α α ατ σ λ τ τ× + − − −  

( )( ) ( ) ( )( ) ( )1 1 1 2 2 2
T Tk S k k S kα α α ας κ ς ς σ ς− −   

( ) ( ) ( )( ) ( )1
3 3

k T T
i k

y i R y i k Z kα α α ατ
τλ ς σ ς−

= −
− −∑              (17) 

where 1 1
τλ λ= , 2 2λ λ= , ( ) ( )1 1 ii

k x k iς µ+∞

=
= −∑ , ( ) ( )2 1 1

j
jj i

k x k iς µ+∞

= =
= −∑ ∑ , ( ) ( )3 1 1

j
jj i

k y k iς µ+∞

= =
= −∑ ∑ . 

Using the discrete Wirtinger-based inequality [16], [18] and interactive convex combinatorial 
inequality [18], and ( ) ( ) ( )1 1 1k

k

k k k

i k i k i k

τ

τ τ τ

− − − −

= − = − = −
∗ = ∗ + ∗∑ ∑ ∑ , we have 

   ( ) ( ) ( ) ( )1
1 1 1 1 1 1

k T T T
i k

y i R y i k k
τ

τ ε ε−

= −
≥ Φ Λ Φ∑               (18) 

Since 1 0Λ > , similar to (18), Jensen inequality [16] and cross convex combinatorial inequality 
[18] can be used to obtain 

    ( ) ( ) ( ) ( )1
1 2 3 2 3 2

k T T T
i k

y i R y i k k
τ

τ ε ε−

= −
≥ Φ Λ Φ∑               (19) 

Because 2 0Λ > , by directly using the discrete Wirtinger-based inequality [16], which yields 

( ) ( ) ( ) ( )1
22 2 4 22 4 2

k T T T
i k

y i R y i k R kτ
τ

τ ε ε−

= −
≥ Φ Φ∑              (20) 

     ( ) ( ) ( ) ( )1
2 3 6 2 6 3

k T T T
i k

y i R y i k R kτ
τ

τ ε ε−

= −
≥ Φ Φ∑               (21) 

According to (9), combined with matrix spaces iT  and ( )1,2,3i iΣ = , it can be obtained 

     ( ) ( )1 1 1 12 0T k T kε εΣ =                  (22) 

     ( ) ( )2 2 2 22 0T k T kε εΣ =                  (23) 

     ( ) ( )3 3 3 32 0T k T kε εΣ =                  (24) 

In addition, it can be obtained from the sector condition (3), one has 

( ) ( )2 4 4 22 0T k T kε ε− Σ ≥                 (25) 

Adding the left-hand side of (21) to ( )1V k∆ , and using (18) and 
( ) ( ) ( )1 1 1

j
j jj i i
y k i Kx k y k iµ µ+∞ +∞

= = =
− = − −∑ ∑ ∑ , we obtain 

( ) ( ) ( ) ( )2
1 1 111

,
m

k T
s ks

V k k s kϖ ε τ ε
=

∆ ≤ Ξ∑               (26) 

Similar to (26), add the left side of (23) and e (25) to ( )2V k∆ , and comprehensively consider (19) 
and (20), one has 

( ) ( ) ( )2 2 2 2
TV k k kε ε∆ ≤ Ξ                 (27) 

In addition, by adding the left of (24) and applying inequality (21), we can obtain 
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( ) ( ) ( )2 3 3 3
TV k k kε ε∆ ≤ Ξ                 (28) 

For 0,kτ τ=  and 1,2ms  ∀ ∈   , if matrix inequalities (11)-(14) hold, then (26)-(28) can be obtained 

( ) ( )1 1 11V k V kλ+ ≤                  (29) 

( ) ( )2 2 21V k V kλ+ ≤                  (30) 

Considering (29), (30) and (15), we can obtain 

       ( ) ( )1 2 , 0V k vV k k≤ ≥                  (31) 

According to conditions (29)-(31), it can be obtained 

( ) ( ) [ )1 1 2 0 , 0,kV k vV kλ≤ ∈ +∞                  (32) 

It is assumed that 

( ) ( )1

1 1

k
j jj i k j j

f i f k jµ µ+∞ − +∞

= = − =
≥ −∑ ∑ ∑ , ( ) ( )1

1 1 1 1

l k l
l ll j i k j l j

f i f k jµ µ+∞ − +∞

= = = − = =
≥ −∑ ∑ ∑ ∑ ∑  

hold, where ( )f i  is a positive real function, then the following inequalities can be obtained by 
using lemma 1 and Jensen inequality [16] 

      ( ) ( ) { } ( )1 1 4 1,0TV k k diag P kη λ η≥ +Ψ                  (33) 

where ( ) ( ) ( )1

T
T T

ii
k k x k iη η µ+∞

=
 = − ∑  . 

Using Schur lemma to (17), we can obtain 
       { } ( ) ( ) [ ]1 4 1 2,0 , 1,k T

l ldiag P v N N l mλ λ+Ψ ≥ ∈
               (34) 

Considering (32)-(34), we can obtain 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) [ ] [ )2
2 1 21 0 , 1, , 0,T T k

l l lk k N N k v V k V l m kϑ η η λ= ≤ ≤ ∈ ∈ +∞


           (35) 

For any initial condition ( )kφ  is satisfied ( ) ( )1 20 0 1V V≤ ≤ , it is not difficult to obtain from 
equation (35) and condition (7) holds. In addition, can be obtained from equation (32), and the 
closed-loop system (9) is exponentially stable. This completes the proof. 

Theorem2. Let the scalars 10 1λ< ≤ , 2 1λ > , 0v > , ( )0 1,2,3i iδ ≠ =  the integer 1k ≥  be given. 
Assume that there exist matrices 3 30 n nP Rα

×< ∈ , 0 n nQ Rα
×< ∈ , 0 n n

jS Rα
×< ∈ , 0 n n

jR Rα
×< ∈ , 

( )0 , 1,2. 1,2n nZ R j iα α×< ∈ = = , 2 2
1

n nM R ×∈ , 2
n nM R ×∈ , n nX R ×∈ , n nY R ×∈ , m nU R ×∈ , m nV R ×∈ , 

m nW R ×∈ ,and the diagonal matrix 0 m nH R ×< ∈  such that, for 0,kτ τ= , 1, 2ms  ∀ ∈   , [ ]1,l m∀ ∈
 , the 

matrix inequalities 

1 1
1

1 1

0T

R M
M R
 

Λ > 
 



  , 21 2
2

2 21

0T

R M
M R
 

Λ > 
 

                 (36) 

( ) ( ) ( )1 1 1 1 2 1 2 1 1 1 1 2 1 1 2 1 1 11 , 0T T T T
k s P P Z Sym Tττ λ λ σΞ Γ Γ − Γ Γ − Φ Λ Φ −Φ Φ + Σ +Ψ <

         (37) 

( ) ( ) ( )2 3 2 3 2 4 2 4 3 2 3 4 22 4 5 2 2 5 2 2 4 4 2 0T T T T TP P R Z Sym T Tτλ σΞ Γ Γ − Γ Γ +Φ Λ Φ +Φ Φ −Φ Φ + Σ + Σ +Ψ <



       (38) 

        ( ) ( )3 5 1 5 2 6 2 6 2 6 2 6 7 2 2 7 3 3 3 0T T T TP P R Z Sym Tτλ λ σΞ Γ Γ − Γ Γ − Φ Φ −Φ Φ + Σ +Ψ <



          (39) 
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( )
1 2 1 2 1 2

1 2 1 2

, ,

1, 2 ,
j j

j j

P vP Q vQ S vS

R vR j Z vZ

 ≤ ≤ ≤


≤ = ≤
               (40) 

        ( ) ( )

( ) { }
2

4
1 4 1

1
0

,0

k
l

T
l

v N
l

N diag P

λ

λ

 
 Ξ ≥
 +Ψ 

               (41) 

where ( ) ( ) ( ) ( )0l l l lN U W V =   , { }2
1 1 11 12 1 1 11 1 12 1 1 1,0, ,0,0, , ,diag Q S S Q S S R Zτκ σ λ κ σ τ σΨ = + + − − − +  , 

{ }2
2 2 21 22 2 2 21 2 22 2 2 2,0, ,0, , , ,0diag Q S S Q S S R Zτκ σ λ κ σ τ σΨ = + + − − − +  , 

{ }2
3 2 21 22 2 2 21 2 22 2 2 2, ,0, , ,diag Q S S Q S S R Zτκ σ λ κ σ τ σΨ = + + − − − +  , 

( ){ } ( ) ( )4 1 1 12 1 11 1 1 8 1 8 1 9 1 90, , , 2 1T Tdiag Q S S R Zτ τλ τ σ κ λ τ σΨ = + Φ Φ + Φ Φ   , [ ]1 10 0 0 0 0 0 TT I Iδ= , 

[ ]3 30 0 0 0 TT I Iδ= , [ ]2 20 0 0 0 0 0 TT I Iδ= , [ ]4 0 0 0 0 0 0 0 TT I= , 
( )1 0 0   0T T T

s s d s sA I X BD U BD Y A X BD V BD W X− − − Σ = − + + −  , 
( )2 0 0 0T T T

dA I X BY A X X BH Σ = − − −  , ( )3 0 0 0T T T
dA I X A X X Σ = − −  , 

4 0 0 0 0 0 0Y H Σ = −  , { }1 1 1,3R diag R R


 , { }2 2 2,3R diag R Rτ
τϕ



 , 

{ } ( ) ( )( )( )22 22 22 1,3 , 1 1 1 , 1R diag R Rτ
τ τϕ ϕ τ τ τ ϕ+ − >



   . 
Then, for any initial condition ( ) [ )0,kφ ∈ +∞  satisfying ( )0 1V ≤ , and (2) the gain of the controller 

is 1K YX −= , the closed-loop system (9) is exponentially stable. 
Proof. Assuming that (36)-(38) are satisfied, the matrix X  is nonsingular. Define the following 

equation 

{ }( )

{ }( )

1

1 1

1 1

1 1
1 2

1
1 1

1
2 2

, ,

,

,

, , , 1, 2, 1, 2,3

,

, ,
, ,

T

T T
j j

T T
j j

i i i

T

T T T

T T T

P X P X X diag X X X

Q X Q X S X S X

R X R X Z X Z X

T X T X j i

M X M X X diag X X

M X M X H H K YX
U UX V VX W WX

α α

α α α α

α α α α

δ α

− −

− − − −

− − − −

− −

− −

− − −

− − −






 = =







  

 

 

 

 

  

 

  

  

                (42) 

Contract transformation is performed on conditions (36)-(41) and (42), and (11)-(16) can be 
obtained respectively. This completes the proof. 

4. Numerical Simulation (Heading 4) 

In this section, a numerical example is used to illustrate the effectiveness of the proposed 
approach. Consider the following two-dimensional CPS: 

1.10 0.15
0.03 0.80

A  
=  
 

, 1 0.1
0 1dA

− 
=  
 

, 1 0.1
0.1 1

B  
=  
 

, 2i iµ −= , 1 15u = , ( )0 2 1 3k
kτ≤ = + − ≤ , 

For this example, the parameters 1 2 3 4δ δ δ= = = , 1 1λ = , 2 1.24λ = , 0.97ν = and FDI attack signals 
( )( ), = (2( ))kf u k k cos k − τ  are selected according to Theorem 2, and the controller gain can be obtained 

by solving (36)-(41) under given initial conditions 
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2.4855 0.2495
0.3337 0.0439

K  
=  − − 
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Figure 1: Energy evolutions of the FDI attacks. 

The FDI attacks’ energy evolution trajectory is shown in Figure 1. Figure 2 shows the state 
trajectory the closed-loop system. It is assumed that the initial condition of the system is [ ]0 2 2x = − . 
As can be seen from Figure 2, under the influence of FDI attacks and mixed delays, the state of the 
closed-loop system still tends to equilibrium although it fluctuates to a certain extent. Therefore, the 
control method proposed in this article can make the system state converge to the equilibrium state 
and has certain control performance. 
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Figure 2: State evolution of the closed-loop system. 

 

5. Conclusions 

In this article, the security control problem of discrete CPS with distributed state delay and 
rapidly varying input delay under network attack is studied. Using a polyhedron model, piecewise 
Lyapunov functional and some summation inequalities, sufficient conditions for asymptotic 
stability of linear matrix inequalities are established, and the safety controller is designed. At the 
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same time, it is also our future work to consider the security control of systems with distributed 
input delays and complex cyber attacks. 
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