
 

 

Research on the Optimization Model of Octane Loss 
Based on Genetic Algorithm 

Jinghua Zhang 
School of Automation, Southeast University, Nanjing, 210018, China 

952287906@qq.com 

Keywords: Octane loss, LSSVM, genetic algorithm, optimisation model 

Abstract: This paper develops an optimisation model for octane loss under the constraints 
of genetic algorithm based desulphurisation. A model on product sulphur content is 
established, five main variables for modelling product sulphur content are selected based 
on the process related to product sulphur content in the gasoline refining process, 
containing three operational variables and two non-operational variables, and LSSVM is 
used to build the model for product sulphur content. Based on the optimization model, the 
optimized operating conditions for the main variables were obtained, with a view to 
providing some reference for other enterprises in the industry and providing some social 
research significance and value for gasoline clean-up. 

1. Introduction 

Nowadays, China's crude oil resources rely heavily on sulfur-containing and high-sulfur crude 
oils from abroad, especially from the Middle East. Heavy oil accounts for 40-60% of such crude oil. 
As heavy oil is difficult to be applied directly, in order to use this resource more effectively, heavy 
oil lightening process technology with catalytic cracking as the core has been vigorously developed, 
and with the increasing awareness of environmental protection, gasoline clean-up technology has 
been developed rapidly [1]. How to effectively reduce the olefin and sulphur content of gasoline 
while maintaining the octane value of the oil has become the focus of gasoline cleaning research. 

In this paper, a model was established for the sulphur content of the product, combine the 
process principles related to sulphur content in gasoline catalytic cracking refineries with the main 
variables of the octane loss model, jointly select the variables required to establish the product 
sulphur content model and then establish the octane loss optimisation model [2]. 

The data in the paper comes from a real sample of companies in the industry provided by the 
17th China Postgraduate Innovation and Practice Competition "Huawei Cup", and the historical 
data provided by this company are used in this paper to solve the modelling and optimisation 
problem of octane loss. 
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2. Product sulfur content model 

2.1 Determination of main variables in modeling 

In the production process of catalytic cracking refined gasoline, the main desulfurization 
methods to control the sulfur content of products include raw material desulfurization, process 
desulfurization, hydrodesulfurization and oxidative desulfurization. The quality of raw materials is 
inconvenient to improve, and industrial verification shows that hydrodesulfurization and adsorption 
desulfurization have good production effects [3]. Therefore, in the input variables of the product 
sulfur content model, the hydrogen-oil ratio of MV1 was selected, the hydrogen sulfide gas flow rate 
of MV4 reducer and the bottom temperature of MV6 reactor related to hydrodesulfurization. In 
addition, the property S of PV13 regenerated adsorbent related to adsorption desulfurization process 
and the sulfur content of PV1 raw material related to raw materials are selected, with five variables, 
which are shown in Tab.1. 

Table 1. Main variables of product sulfur content model. 

Type Variable sequence number Name 

Operate 
variable 

MV3 Reducer pressure 
MV4 Flow rate of fluidized hydrogen in reducer 
MV6 Reactor bottom temperature 

Nonoperational 
variable 

PV1 Sulfur content of raw materials 
PV13 Regenerated adsorbent S 

2.2 Establishment of least squares support vector machine model 

2.2.1 Modeling process of support vector machine model 

The modeling process of LSSVM is to first determine the kernel function, its parameters and 
regularization parameters of the function model, and then train the model through input and output. 
The support vector and threshold are solved by the least square method [4]. Given the data training 
set T, construct a prediction function with the following form, so that the output of the prediction 
function is close to the actual output function value of the sample: 

                           (1) 

                         (2) 

The algorithm is as follows: 
Step1:build the objective function of LSSVM optimization problem. 

                          (3) 

Step2:construct constraints. 

                           (4) 

Step3:build Lagrange function: 

              (5) 
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Step4:from KKT condition, get the condition that the partial derivative of each variable is 0 at 
the optimal value: 

                       (6) 

Step5: solve. 

                          (7) 

                           (8) 

2.2.2 Establishment of Product Sulfur Content Model Based on LSSVM 

In this paper, a product sulfur content model with five input variables and one output variable 
based on LSSVM is established. Here, the sample data are also randomly divided into training 
sample set and test sample set according to the ratio of 8: 2, that is, 325*80%=260 training data and 
325*20%=65 test data. RBF_kernel function is selected for LSSVM kernel function. The network is 
trained by training data to extract the deep mapping relationship between input variables and output 
variables, and then the accuracy of the model is verified on the test set, and the product sulfur 
content model based on LSSVM is continuously adjusted and finally constructed. 

In this paper, the LSSVM model is built in Matlab software, and the parameters are constantly 
adjusted. C is the regularization parameter as 500 and σ is the kernel function parameter as 2.5. Is 
the maximum number of neurons in MN RBF network, DF is the display interval, and epoch is the 
iteration number of model training. 

The input of RBF kernel function only activates the nearby sample points, and the kernel 
function has fewer parameters, so the complexity of the model is smaller, as shown in the following 
formula: 

                              (9) 

2.2.3 Modeling results of product sulfur content 

Fig.1 is the final product sulfur content model result based on LSSVM. The blue dots in the 
figure are the real values of the test data, and the red dots are the predicted values output by the 
model. It can be seen that the trends among the data points are basically consistent, and the 
difference between the real values and the predicted values is about 3.5 on average, indicating that 
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the model has achieved a good result, which meets the requirements and lays a good foundation for 
the subsequent optimization model construction. 

 
Figure 1. Results of product sulfur content model based on LSSVM. 

3. Model building 

3.1 Determination of the optimisation objective function 

As the optimization of gasoline catalytic cracking must meet the premise of ensuring that the 
sulfur content of the product is not higher than 5 /g gµ , so that the octane loss of the product is as 
low as possible [5]. Therefore, the optimization condition is set to be the minimum octane loss, and 
the optimal solution of octane loss is solved for each sample, and then the sample with the optimal 
solution greater than 30% is selected, which is the sample that the model is looking for, so the 
optimization condition is: 

2min ( ) min( )J t R= ∆                         (10) 

_ls svmf  is a minimum support vector machine model for the sulphur content of the product, with 
the constraint: 

_ 1, 13, 1, 4, 6( ) 5ls svmf PV PV MV MV MV ≤                    (11) 

  axiMin MV M≤ ≤                          (12) 

The operational variables for product sulphur content and product octane loss are selected and 
concentrated, and the elements in the set MVi. 

                 { }1, 4, 6iMV MV MV MV∈                        (13) 

The adjustment of operating variables in the production of refined gasoline cannot be done in 
one go, otherwise it may easily lead to production safety accidents. The adjustment of the operating 
variables needs to be adjusted slowly according to the values of the operating variables solved by 
the optimisation to push the process reaction to a state with low product octane loss and low product 
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sulphur content, so the upper and lower limits of the operating variable adjustment value jMV∆  
were defined as 30% of the upper and lower limits of the range of values of the operating variables. 

{ }1, 4, 6jMV S MV MV MV∆ ∈ = ∆ ∆ ∆                    (14) 

10.051 0.051MV− ≤ ∆ ≤                        (15) 

4120 120MV− ≤ ∆ ≤                          (16) 

69.3 9.3MV− ≤ ∆ ≤                          (17) 

The smaller the adjustment value of the corresponding operating variables, the better, while 
reducing the loss of octane and ensuring that the sulphur content of the product meets the 
requirements. Therefore the final optimisation objective and constraints for the octane loss 
optimisation model under the desulphurisation constraints developed in this paper are given by the 
following equation, where λ  is a weighting factor. 
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               (18) 

3.2 Determination of the overall structure of the optimisation model 

The operating conditions are optimised subject to an upper limit of the product sulphur content 
constraint. The radial basis neural network model for product octane loss is therefore passed to the 
optimisation solver as the objective function and the product sulphur content model is passed to the 
optimisation solver as the constraint. The optimisation solver regulates the smallest possible 
objective jointly with the variable operating variables and converts the multi-objective optimisation 
into a single objective optimisation to solve for the optimised solution, i.e. the MV operating 
conditions. The operating conditions are passed to the product octane radial basis neural network 
model to obtain the optimised octane loss, compared with the initial octane loss to obtain the octane 
loss reduction, and finally to obtain the sample with an optimised octane loss reduction greater than 
30%, i.e. the sample for which the model requires a solution, and the MV operating solution for this 
part of the sample is the optimised operating condition for the main variable corresponding to the 
sample. 

4. Model solving 

4.1 Genetic algorithm based solution method 

After building a RBF neural network model for octane loss of gasoline catalytic cracking 
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products, an optimised MV value is solved by giving an optimised feasible solution within a set 
acceptable range. 

{ }
{ }
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                  (19) 

Where R∆  is calculated from the RBF prediction model, Matlab simulations were performed on 
the developed octane loss optimisation model under desulphurisation constraints until the algorithm 
finally converged to a steady state. The basic experimental parameters were set to 50 for the 
population size, 0.8 for the crossover probability, 0.2 for the variation probability and 200 for the 
maximum number of evolutions. The simulation of the model showed a linear increase in the initial 
individual values as the number of iterations increased, proving that this solution method is 
effective. 

After solving the optimisation model using the genetic algorithm, the optimisation solution will 
be obtained for 325 samples. Based on the overall structure of the optimisation model, it can be 
seen that the next step is to select the samples with an optimised octane loss value reduction greater 
than 30%, i.e. the target samples, and to determine the operating conditions for the optimisation of 
the main variables corresponding to these samples. 

4.2 Model solution results 

4.2.1 Results of changes in target variables before and after optimisation 

Based on the above work, the final optimization results for 325 samples were obtained in this 
paper, i.e. the changes in the sulphur content variables and the changes in the octane loss variables 
of the sample products before and after optimization. Some of the results are shown in Tab.2. 

Table 2. Partial sample optimization results. 

Sample number 
Before 

adjustment 
After adjustment Before adjustment After adjustment 

Sulfur content of product( )               Loss of RON 
1 3.2 4.0 1.4 0.6687 
2 3.2 4.8 1.2 0.6474 
3 3.2 4.6 1.4 0.6366 
4 3.2 4.7 1.4 0.6880 
5 3.2 4.6 1.3 0.6847 
6 3.2 5.0 1.4 0.6251 
7 4.6 3.0 1.2 0.6302 
8 6.6 3.5 1.3 0.6212 
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Fig.2 shows the before and after optimization of sulfur content in the product. In the figure, the 
blue line is the sulfur content of the original product of the sample. Because the title requires that 
the sulfur content of the product should not exceed 5 gg /µ , the yellow line is the sulfur content 
value of the optimized sample product, which can be obtained after optimization. The sulfur content 
of all sample data does not exceed 5 gg /µ , which meets the optimization constraints and the model 
solution is effective [6]. 

 
Figure 2. Before and after optimisation of product sulphur content. 

Fig.3 shows the before and after graphs of octane loss optimisation. In the graph, the blue line is 
the original octane loss value of the sample and the yellow line is the octane loss value of the 
sample after optimisation. As can be seen from the graph, most of the samples were optimised to 
have an octane loss greater than 30%, with only some samples failing to meet this target. 23 
samples in total were calculated to have failed to meet the requirement. 

 
Figure 3. Before and after octane loss optimisation. 
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4.2.2 Optimize the operating condition results of the corresponding operating variables. 

According to the above results, a total of 23 samples failed to meet the requirements, and the 
results are shown in Tab.3. In addition, it also shows that a total of 302 samples are optimized, and 
the octane number loss is more than 30%. 

Table 3. Some samples with RON loss decreasing by less than 30%. 

Sample number Original RON loss RON loss after 
optimization RON loss reduction 

34 0.9 0.6811266 24.32% 
129 0.9 0.686326205 23.74% 
139 0.8 0.643719084 19.54% 
142 0.2 0.311788411 -55.89% 
… … … … 
270 0.8 0.641110236 19.86% 
292 0.6 0.68685614 -14.48% 

It is known that 302 samples have lost more than 30% of octane number after optimization. For 
these samples, the changes of the main variables that make them achieve this goal are the solutions 
obtained by these sample optimization models, that is, the optimized operating conditions of the 
main variables corresponding to these samples [7]. Some changes of optimization operations are 
shown in Tab.4. 

Table 4. Changes of partial optimization operation. 

Sample 
number 

Before 
adjustment 

After adjustment Before 
adjustment 

After 
adjustment 

Before 
adjustment 

After 
adjustment 

Hydrogen-oil ratio MV1 
Flow rate of fluidized 
hydrogen in reducer 

MV4 

Reactor bottom 
temperature MV6 

1 0.27632 0.3100 647.7524 820.0000 421.6081 411.0000 
2 0.27713 0.3100 651.8219 820.0000 417.9278 411.0000 
3 0.27701 0.3100 650.7472 820.0000 420.0035 411.0000 
4 0.27722 0.2300 652.6691 820.0000 419.9648 411.0000 
5 0.27731 0.3100 649.3409 820.0000 422.1289 411.0000 
6 0.27661 0.3000 650.1234 820.0000 422.1307 411.0000 
7 0.27741 0.3100 649.1494 820.0000 421.3018 411.0000 
8 0.27692 0.3100 649.7636 820.0000 418.6726 411.0000 
… … … … … … … 

11 0.28884 0.2300 648.6645 600.0000 418.0324 411.0000 

5. Conclusion 

This paper focuses on the optimization model of octane loss under desulphurization constraints 
based on real sample data from an industrial unit of an enterprise. Firstly, a model on product 
sulphur content was developed, and five main variables for modelling product sulphur content were 
selected based on the processes related to product sulphur content in the gasoline refining process, 
containing three operational variables and two non-operational variables. The LSSVM was then 
used to model the product sulphur content, determine the objective function and constraints of the 
octane loss optimisation process, and build the overall structure of the octane loss optimisation 
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model; next, a genetic algorithm belonging to a heuristic algorithm was used to solve the octane 
loss optimisation model under the established desulphurisation constraints. The results show that a 
total of 302 samples were optimised with an octane loss greater than 30%. Based on the 
optimisation model, the optimised operating conditions for the main variables corresponding to 
these samples were also obtained. 
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