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Abstract: For a class of network control systems with both data packet dropout and network 
communication delay problems, a new robust model predictive control method with 
compensation function is proposed. Considering that the system has interference problems, 
in the two cases of long-delay and short-delay, the packet loss problem is established as a 
Bernoulli sequence, and then a discrete NCS model based on the state observer is obtained. 
The state observer in the model can deal with the data packet dropout compensate and 
predict the state of the long-delay problem. Through linear matrix inequality and Lyapunov 
method, the controller is designed to obtain sufficient conditions for the closed-loop system 
to be exponentially stable and meet the specified performance indicators. Finally, compared 
with the method without any compensation measures, the method in this paper can get 
better control effect. 

Keywords: Networked control system; state observer; compensate; H ∞ ; Bernoulli 
sequence 

1. Introduction 

The network control system (NCS) is a closed-loop feedback control system formed by 
connecting various components (sensors, controllers, and actuators) distributed in different regions 
by means of network technology. As shown in Figure 1, compared to the traditional point-to-point 
control system, this distributed control system has the advantages of less wiring, low cost of setting 
up the system, high flexibility and high efficiency, simpler system expansion and maintenance, and 
remote control.Because of this, network control systems can be widely used in aerospace, factory 
automation, robotics, remote fault diagnosis and other fields [1-3]. 

At the same time, the addition of the communication network also complicates the analysis and 
design of the control system. The limited network bandwidth makes data packet dropout and 
network communication delay often occur in the network control system. Literature [4] describes 
the stability study of state feedback network control systems in the presence of network 
communication delay and data packet dropout. In actual network control system applications, the 
state of some systems is often unmeasurable. Literature [5-9] designed a state observer based on 
output feedback. The control system only considered the delay problem, and did not compensate for 
the impact of the data packet dropout problem. In [10], considering the simultaneous existence of 
network communication delay and data packet dropout, a state observer is used to compensate the 
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system, and a better control effect is obtained. The problem of data packet dropout in the actual 
field is a random process, so it is very necessary to establish a random model of the network control 
system. Literature [11-12] regards the problem of data packet dropout as a random problem, and 
describes it as a random effort. Sequences and random processes based on Markov. At the same 
time, the actual engineering systems are all disturbing, and many current articles are studying pure 
linear systems. In [13] considering the data packet dropout and long network communication delay 
at the same time, the controller design with disturbing network control system is carried out. 
Literature [14] compensates the control signal according to the operating parameters of the random 
long-delay system, so as to achieve the stable control of the random long-delay system. Literature 
[15] studied the problem of nonlinear networked quantitative control with network communication 
delay. Literature [16] describes the application of the truetime toolkit in the network control system. 
The simulation of numerical examples in the article can visually see the effect of the control system. 

Communications 
network

Actuator 1 Sensor 1

system1

Sensor 2Actuator 2

system2

Controller 
1

Controller 
2

 
Figure 1: The structure of the network control system. 

In this paper, the data packet dropout problem is established as a Bernoulli model, considering 
the short-delay and long-delay conditions respectively. For the state unobservable problem, a linear 
system model based on the state observer is constructed to compensate for the data packet dropout 
and predict the state. Using Lyapunov's theorem and linear matrix inequality and other methods, a 
controller design method that satisfies the specified performance index is given, so that the closed-
loop system is exponentially stable and can withstand certain external disturbances. 

2. System Modeling  

The network control system structure considered in this article is shown in Figure 2. 

 
Figure 2: Single-sided random delay network control system structure. 

Suppose the state space of the continuous controlled object is described as 
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where ( ) nRtx ∈  is the state of the controlled object, ( ) mRtu ∈ is the input of the controlled 
object, ( ) pRty ∈  is the measured output of the controlled object, ( ) pRtG ∈ is interference, and 
( ) ),0[2 ∞∈LtG  ,and MCBA ,,,  are constant matrices with corresponding dimensions. 
Assume that ( ) ( )MmmTTm ,,2,11 =≤<− τ , let ( )Tm 1' −−=ττ , the discrete time model of 

equation (1) can be obtained as 
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The controller is kk Kxu = . Due to the packet loss phenomenon in the actual system, the 
controller can be described as kkk Kxu α= , { }kα  represents the data packet dropout situation at time, 
{ } αα ==1kP , αα −== 1}0{ kP , 10 ≤≤α ,where α are known constants, and P is the value 

random Bernoulli sequence of 0 and 1. 

2.1. Short network communication delay  

When m=1, a short-delay event occurs. This event is marked as 1E , and the probability of 
occurrence is 1r . When the network communication delay is less than one sampling period, that is, 
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≤+= 12
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 Therefore, we have EFBDEFBD −=Γ+=Γ 2211 , . 
So the discrete model of the controlled object can be described as the following form: 
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Where IFF T ≤ . 
Since the state of the controlled object in the network control system is not measurable, a full 

state observer is designed to reconstruct its state. The steps are as follows: 
Step 1: Use the output value kx  to correct the value: )ˆ(ˆ kkkk xCyLxx −+=  
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Step 2: Calculate the state value τ+kx̂  and control quantity ku  at the time of delay τ+T : 

100ˆ −+ Γ+Φ= kkk uxx τ , where ATe=Φ , ∫
−
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0
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Step 3: Calculate the state value of the observer  at time (K+1)T: 

( ) ( ) ( )kkkkkkkkk xxLCuEFBDuEFBDxuuxx ˆˆˆ 1211211 −Φ+−+++Φ=Γ+Γ+Φ= −−+
 Step 4: Define the error variable kkk xxe ˆ−= , kkkk GNLCeee 11 +Φ−Φ=+  

Thus, we can obtain the following kkk GNzz 111 +Λ=+ . 
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2.2. Long network communication delay  

When a long-delay event occurs at 1>m , the mark is 2E , and the probability is 2r . Assuming 
that the network-induced delay is greater than one sampling period and the part exceeding one 
period is equal to the value of the short-delay. Taking 2=m  as an example below, the method can 
be extended to the case of 2>m . 

The same can be obtained EFBDEFBD −=Γ+=Γ 2211 , . 
Since the state of the controlled object in the network control system is not measurable, a full 

state observer is designed to reconstruct its state. The steps are as follows: 
Step 1: Use the output value a to correct the value: )ˆ(ˆ kkkk xCyLxx −+=  
Step 2: Calculate the state value τ+kx̂ and the control quantity ku  at the time of delay τ+T : 

100ˆ −+ Γ+Φ= kkk uxx τ , where τAe=Φ0 ,
( )dte tkTA∫ −+=Γ

τ τ

0
0 , τα += kkk xKu ˆ . 

Step 3: Calculate the state value of the observer at time (K+1)T: 
( ) ( ) ( )kkkkkkkkk xxLCuEFBDuEFBDxuuxx ˆˆˆ 221122111 −Φ+−+++Φ=Γ+Γ+Φ= −−−−+

 Step 4: Define the error variable kkk xxe ˆ−= , kkkk GNLCeee 21 +Φ−Φ=+  
Thus, we can obtain the following kkk GNzz 221 +Λ=+ . 
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From the above 1=m , 2=m  derivation, we can get that the method has generality and is 

suitable for the long time delay of 1>m . 

3. Stability Analysis  

The feedback controller based on the state observer is designed for the above closed-loop 
system, so that the system meets the following requirements: 

(1) When external disturbance 0=kG , the closed-loop system gradually stabilizes. 
(2) Under zero initial conditions, the controlled output kz  of the closed-loop system satisfies the 

following performance index ∞H . 
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Where γ  is a given scalar. 
Lemma 1: For the asynchronous state system kikik GNzz +Λ=+1 , mi ,,2,1 =  constrained by 

the event rate ir , if there is a Lyapunov function ( )xV  that satisfies the conditions 

( ) 2
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Lemma 3: Let SOW ,,  be a real matrix of appropriate dimensions, where W  is a symmetric 

matrix, then for all matrices F  satisfying IFF T ≤ , the inequality 0<++ OFSOFSW TTT  holds, 
if and only if there is a constant 0>ε  such that 01 <++ − SSOOW TT εε . 

Remark 1: For the system described above, if there is a scalar 0>ε  and a symmetric positive 
definite matrix nnnn RYRX ×× ∈∈ , , nnRZ ×∈ , So that the following matrix inequality holds. 
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Where ∗  represents the symmetric item in the symmetric matrix, the system is asymptotically 

stable. 
Proof: By simplifying the formula (3) of Lemma 1, we can get: ( ) ( ) 02
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For the above formula, multiply to the left and { }IIIIRQPdiag ,,,,,, 111 −−−  to the right 

respectively,If ZRYQXP === −−− 111 ,,  is combined, the conclusion of Theorem 1 can be obtained. 
Remark 2: For 10,0 <≤> βλ , if there is a positive definite symmetric matrix ZYXRQP ,,,,,  

and a controller coefficient K  matrix, the following inequality holds 
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Then the closed-loop system meets the above ∞H  performance index. 
Proof: Choose the Lyapunov function in Remark 1 as follows: 
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The Bernoulli probability condition satisfies: 
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By Schur's supplementary lemma, the following matrix can be obtained, which needs to be full 
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Multiply both sides of the above inequality by { }IIIIIIQRRPdiag ,,,,,,,,, 1111 −−−− , and let 

111 ,, −−− === RZQYPX , 1−= KRH , the controller parameter can be obtained by 1−= HZK . 
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Summing k  from ∞→0  to the above formula can be obtained: 
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According to the zero initial condition { } 00 =VE , and the closed-loop system is gradually stable, 
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4. Example Simulation  

The matrix of known coefficients is 
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Set the simulation parameters: the sampling period is sT 01.0= , the delay is s007.0=τ , the 
probability of data packet loss is assumed to be 2.0=α , and the parameter 34.0=λ  is known. 

Using the LMI toolbox to solve the linear matrix inequality can be obtained 
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Figure 3: Dispatching situation of each network module. 

The network scheduling situation of the system is shown in Figure 3, where the low level of the 
curve represents the idle state, the high level represents the sending state, and the medium 
represents the waiting state. 

The curve can indicate that the controller node, sensor/actuator node, and interference node all 
have packet loss and long delay, but the system state can still be stable, which further verifies that 
the method proposed in this paper is effective.
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response curve and control output curve can be obtained through MATLAB/Truetime simulation as 
shown in Figure 4 and Figure 5, respectively. Through the simulation curve, the system state 
variables and control output can be gradually stabilized in a small range. Meet the given ∞H  
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Figure 4: System status response. 

 

Figure 5: System control output response. 
Figure 6 and Figure 7 are the state response curves and control output curves without taking any 

compensation measures and using the same state feedback controller. 

 

Figure 6: System Status Response without Compensation. 
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Figure7: System control output response without compensation. 
By comparison, adopting the design method of this paper, the curve oscillation amplitude is 

small, the overshoot is small, and better control performance can be obtained. 

5. Conclusions 

In order to solve the problems of network communication delay, data packet dropout and 
interference in the network control system, a new robust model predictive control method with 
compensation function is proposed. Data packet dropout has the characteristics of Bernoulli 
sequence random binary distribution; at the same time, the network communication delay in the 
network control system conforms to the asynchronous dynamic theorem, and the delay less than one 
sampling period and the delay greater than one sampling period are classified into short-delay and 
long-delay. Because the state in the system is not measurable, the state observer is used for 
predictive control, and the ∞H controller strategy is designed based on Lyapunov's theorem and 
linear matrix inequality. Finally, the effectiveness of the method is verified by simulation. The 
curve shows that the system can maintain stability in the presence of external interference. 
Therefore, the ∞H  controller designed in this paper is feasible. 
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