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Abstract: LanguageCert manages the construction of its tests, exams and assessments 
using a sophisticated item banking system which contains large amounts of test material 
that is described, inter alia, in terms of content characteristics such as macroskills, 
grammatical and lexical features and measurement characteristics such as Rasch difficulty 
estimates and fit statistics. In order to produce content and difficulty equivalent test forms, 
it is vital that the items in any LanguageCert bank manifest stable measurement 
characteristics. 
The current paper is one of two linked studies exploring the stability of one of the item 
banks developed by LanguageCert [Note 1]. This particular bank has been used as an 
adaptive test bank and comprises 820 calibrated items. It has been administered to over 
13,000 test takers, each of whom have taken approximately 60 items. The purpose of these 
two exploratory studies is to examine the stability of this adaptive test item bank from both 
statistical and operational perspectives.  
The study compares test taker performance in the live dataset with over 13,000 test takers 
(where each test taker takes approximately 60 items) with a simulated ‘full’ dataset 
generated using model-based imputation. Simulation regression lines showed a good match 
and Rasch fit statistics were also good: thus indicating that items comprising the adaptive 
item bank are of high quality both in terms of content and statistical stability. Potential 
future stability was confirmed by results obtained from a Bayesian ANOVA. As mentioned 
above, such item bank stability is important when item banks are used for multiple 
purposes, in this context for adaptive testing and the construction of linear tests. The current 
study therefore lays the ground work for a follow-up study where the utility of this adaptive 
test item bank is verified by the construction, administration and analysis of a number of 
linear tests. 

Introduction 

This paper reports on a study investigating the stability and robustness of one of the item 
banks developed by LanguageCert. Given that both linear paper-based and adaptive high-stakes tests 
are produced from such item banks, key issues that need to be confirmed are item bank stability and 
item measurement quality in terms of tests generated from such item banks (see Mills & Steffen, 
2000). These issues are important because test quality is a vital consideration for any organisation 
administering high-stakes examination.  
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Item Bank Size and Stability 

Operationally, a key question is how to establish the stability of an item bank from a 
measurement perspective. In this context, we are working with an item bank containing 820 items 
used both as an adaptive test bank and for the generation of linear tests. ‘Stability’ may be defined 
here from two perspectives. The first is that model-fit statistics remain within acceptable ranges, even 
at the extreme ends of the percentile spectrum. The second, from an operational perspective, is that 
tests derived from the item bank produce comparable results when run with test takers.  
One of the early researchers into item banking with particular reference to adaptive testing some five 
decades ago was Choppin (1968). Choppin’s starting point was that an item bank of around 500 items 
was required, calibrated on 2,000 test takers. Ree (1981) conducted simulations of different adaptive 
test scenarios with differing test taker and item bank sample sizes. His recommendations, to an extent, 
echoed Choppin’s findings: that an item bank comprising at least 200 items and calibrated on 2,000 
test takers might be an acceptable starting point. Wainer (2000) describes an item pool consisting of 
some 800 items. Voss & Blumenthal (2020) describe a pool of 1,071 items calibrated on some 4,200 
test takers.  
Other researchers have nonetheless recommended rather larger item bank sizes. Derner et al. (2008) 
in discussing the construction of an item bank to measure technical skill attainment mentions 9,000 
items as an optimal size, resources permitting. Similarly, Rudner (2009), in describing the 
development of the GMAT, states that for reasons such as security and broad construct coverage, the 
GMAT comprised over 9,000 items. 
Among the limited number of researchers who have investigated stability (see e.g., Gao & Chen, 
2005; Weiss & von Minden, 2012; Sahin & Weiss, 2015) studies have tended to focus on the 
theoretical construct in terms of how many (or rather how few) items might be necessary for 
information to be provided at appropriate θ levels (theta, for personal ability estimates) and with item 
parameters accurately estimated. While these studies provide an informative backdrop, the second 
study in this set differs somewhat in its approach to stability, in that following a simulated ‘full 
dataset’ study, an investigation into the direct construction and analysis of real world tests from a live 
item bank is conducted. 
The LanguageCert adaptive item bank described in the current paper contains 820 items, and subsets 
of approximately 60 items have been administered (as adaptive tests) to approximately 13,000 test 
takers. This gives a live dataset of 0.78 million data points against a theoretical maximum of 10.66 
million data points. 
In assessment situations where items need to be calibrated to a common scale, analysis needs to take 
account of extensive amounts of missing data (Roth, 1998). This is particularly the case with the 
current item bank and adaptive test. As mentioned above, the adaptive bank contains many hundreds 
of items, with responses available for each test taker to only a small number of items. For the 
reliability of such an item bank to be demonstrated, item statistics therefore need to be computed such 
that missing values in the dataset are taken account of. This may be achieved by using imputed values 
(Peugh & Enders, 2004). 
A number of methods for evaluating the effect of missing data have been explored: model-based 
imputation (Huisman & Molenaar, 2001); pairwise deletion (Zhang & Walker, 2008); maximum 
likelihood (Schminkey et al, 2016); multiple imputation (Li et al., 2015). The consensus would appear 
to converge on model-multiple imputation, and it is this method which has been adopted in the current 
study. 
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Multiple Imputation in the Current Study 

The current study describes the analysis of this adaptive test item bank where missing data is 
simulated using the Rasch measurement program Winsteps (Linacre, 2018). Imputed missing data 
values have been generated via model-based multiple imputation, with the starting point for the 
simulation being, as mentioned, the 13,000 test takers, with their individual responses to 60 items. 

Methodology 

Figure 1 below presents a snapshot of data of actual test taker responses in the adaptive test 
dataset.  

 
Figure 1. Data points in the live LTE adaptive test dataset 

As may be seen from Figure 1, the data occurs as chunks, spread out across a vast data space. 
The analysis in the current study has been conducted using the software Winsteps (Linacre, 2018), 
which simulates data using model-based multiple imputation. In the analysis, simulated data was 
imputed from the dataset presented in Figure 1 above. The ‘full’ dataset has been constructed – not 
on the basis of random responses – but via the software imputing a dataset for each test taker for all 
820 items based on their limited set of actual responses. From the existing 0.78 million data points 
(as in Figure 1), the full dataset contains 10.66 million data points. Figure 2 presents a sample of the 
simulated dataset. 

 
Figure 2. Simulated ‘full’ dataset 

Hypotheses 

The overarching hypothesis is that the simulation will return statistics within acceptable 
values, indicative of item bank stability. The study pursues the following hypotheses. 
1. Regression line (R2) values will be a minimum of 0.75 [the rule of thumb for ‘substantial’ R2 values 
(Ringle & Sinkovics, 2009)]. 
2. Rasch infit and outfit statistics will be within acceptable ranges at the 25th and 75th percentiles: 
between 0.5 - 1.5. 
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3. The Bayes Factor will be in the range of 30-100 or higher, indicative of very strong evidence for 
the hypothesis of interest. 

Rasch Measurement 

The current study, as mentioned, is predicated on the use of the Rasch model, a brief overview 
of which is provided below. 
The use of the Rasch model enables different facets (e.g., person ability and item difficulty) to be 
modelled together, converting raw data into measures which have a constant interval meaning 
(Wright, 1997) and which provide objective and linear measurement from ordered category responses 
(Linacre, 2012). This is not unlike measuring length using a ruler, with the units of measurement in 
Rasch analysis (referred to as ‘logits’) evenly spaced along the ruler. Once a common metric has been 
established for measuring different phenomena (test takers and test items, for example), person ability 
estimates may then be calculated independently from the items used, with item difficulty estimates 
also being calculated independently from the sample recruited. 
In this manner, the Rasch model enables persons and items to be calibrated onto a single 
unidimensional latent trait scale – also known as the one-parameter IRT (Item Response Theory) 
model (Bond & Fox, 2007). Person measures and item difficulties are placed on an ordered trait 
continuum by which direct comparisons between person measures and item difficulties can be easily 
conducted, and results subsequently interpreted with a more general meaning. 

Rasch Model Fit 

Broad criteria in assessing model fit are the Infit and Outfit mean square statistics (i.e., 
estimates of population variance, or standard error) and the Standardised Infit and Outfit (i.e., Z-
score) statistic. These statistics are outlined briefly below. 
Infit may be seen as the ‘big picture’ in that it scrutinises the internal structure of an item or person. 
High infit mean square values indicate rather scattered information within the item or person, 
providing a confused picture about the placement of the item or person. Very small infit values 
indicate only very small variation and, provide therefore, little information to articulate clear and 
meaningful judgments about an item or person. 
Outfit gives a picture of ‘outliers’, that is responses from persons or items that appear to be 
considerably out of line with where a person or item would expect to be placed. 
For both Infit and Outfit, a perfect fit of 1.0 indicates that obtained values match expected values 
100%. While acceptable ranges of tolerance for fit vary, acceptable ranges are generally taken as from 
0.5 for the lower limit to 1.5 for the upper limit (Lunz & Stahl, 1990). 1.5 to 2.0 is considered just 
about acceptable, with figures beyond 2.0 unacceptable. 
Bayesian Statistics 
Bayesian statistical methods describe the conditional probability of an event based on data as well as 
prior information or beliefs about the event, with probabilities computed and updated after obtaining 
new data – see Andraszewicz et al. (2015). 
Since Bayesian statistics treat probability as a degree of belief, permitting inferences about future 
events to be estimated in a positive way – other than simply of failure to reject the alternative 
hypothesis, as in standard statistical testing. 
In Bayesian statistics, the critical statistic is the Bayes Factor (BF) – the ratio of likelihood between 
the null and the alternative hypothesis. Jeffreys (1961) proposes cutoff levels for interpreting the 
strength of Bayes Factors, recommending cutoff levels ranging from 1 (no evidence for the alternative 
hypothesis) to 10-30 (strong evidence), to 30-100 (very strong evidence), to > 100 (extreme evidence 
for the alternative hypothesis).  

16



 
 

The credible interval is the Bayesian statistics version of the standard (“frequentist”) statistics 
confidence interval. The credible interval represents the spectrum in which a specified percentage, 
e.g., 95%, of cases would fall. It has a direct interpretation as “the probability that ρ is in the specified 
interval” (Hoekstra et al., 2014). 

Results 

To test the hypotheses, the simulation was run to explore how a potentially-complete dataset 
compared with the live dataset which contained missing data values. 
Table 1 presents the regression line calculated for the simulation. 

Table 1. Simulation regression line 

Sample size 13,000 
R2 0.99 

As can be seen, the simulation shows an extremely good match with the regression line of 0.99 – 
markedly above the target of 0.75 (Ringle & Sinkovics, 2009). This result gives an indication of the 
stability of the calibration of the adaptive item bank under investigation, which is underpinned, it has 
to be assumed, by the quality of the items which constitute the bank. 
Item-model Fit Statistics 
Table 2 below presents a comparison of item-model fit statistics between the live (‘sparse’) and 
simulated (‘full’) dataset. Unacceptably high values are flagged in red font. 

Table 2. Live and Simulated datasets (N=820): Item fit statistics 

Percentile statistics Infit  Outfit 
 Live 

dataset 
Simulated 
dataset 

 Live 
dataset 

Simulated 
dataset 

Mean 1.03 1.00  1.07 1.00 
Std. Deviation 0.34 0.01  0.45 0.03 
Minimum (1st percentile) 0.54 0.98  0.98 0.93 
25th percentile 0.93 1.00  0.89 0.99 
50th percentile 0.97 1.00  0.95 1.00 
75th percentile 1.05 1.00  1.10 1.01 
Maximum (99th percentile) 4.76 1.02  5.18 1.37 

As can be seen, at the 25th and 75th percentiles, fit statistics for values in the existing live dataset are 
well within the acceptable range of 0.5 – 1.5. It is only at maximum values that both infit and outfit 
mean squares emerge as being unacceptably high. 
The simulated ‘full’ dataset presents a picture of stability – even at minimum and maximum percentile 
values (See Table 2). The larger standard deviations which emerge with the live dataset may be 
accounted for by the fact that each test taker in the live dataset has only 60 data points, as opposed to 
over 820 in the case for every item in the simulations. 
The results using the simulated data suggest that the quality of the test items in the adaptive test item 
bank is high and that the adaptive test as it is currently calibrated would appear to be robust. 
Person-model Fit Statistics 
The explorations above have been at item level. To further explore the stability of the item bank, 
person-model fit statistics are now reported. Person values and misfit are a possibly greater 
encumbrance than item values – certainly when these are all calibrated – due to the fact that test takers 
may guess, leave blanks, cheat etc. (see Meijer, 1996). 
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The current study builds on research by Coniam et al. (2021), which documented different phases of 
measurement scale development for the LanguageCert Test of English (LTE), validating the 
LanguageCert Item Difficulty (LID) scale. Test taker results are reported against CEFR (the Common 
European Framework of Reference for Languages) levels, which have been defined on the basis of 
LanguageCert Item Difficulty (LID) scale scores; these are laid out in Table 3 below.  

Table 3. LID scale 

CEFR level Mid point 
C2 160 
C1 140 
B2 120 
B1 100 
A2 80 
A1 60 

The LID scale in Table 3 above is key for the interpretation of Table 4 below, which presents person-
model fit statistics for the live and simulated datasets, with unacceptably high values again in red 
font. LID values are also included in the table in order to provide a more in depth picture of 
comparability.  

Table 4. Live and simulated datasets (N=13,000): Person fit statistics 
 Live dataset  Simulated dataset 
 LID 

values Infit Outfit  LID 
values Infit Outfit 

Mean 120.80 1.00 1.03  121.12 1.00 1.00 
SD 18.86 0.17 0.39  18.93 0.04 0.15 
Minimum (1st percentile) 37.96 0.43 0.19  42.03 0.84 0.46 
25th percentile 108.46 0.89 0.80  108.63 0.97 0.92 
50th percentile 120.45 0.98 0.94  120.82 1.00 0.98 
75th percentile 134.43 1.10 1.15  134.76 1.03 1.05 
Maximum (99th percentile) 180.64 2.00 8.47  182.84 1.19 3.73 

As can be seen, at the 25th, 50th and 75th percentiles, LID measures are constant with both datasets – 
indicative that the simulated dataset is a good extrapolation of the live dataset. 
Fit statistics are within acceptable values. It is again only at maximum values that outfit mean squares 
in particular emerge as unacceptably high. This may well be due to outliers, i.e., test takers who have 
scored higher than they might have been expected to as a result of correct guesses. There is less misfit 
in infit and outfit mean square values in the simulated dataset than in the live dataset. This again 
suggests that – even though indications are that values computed from the current live dataset are 
stable and reliable – as the dataset increases in larger size, its stability will improve even further. 
Bayesian Statistic Results 
Bayesian statistics permit, as mentioned, the exploration of the probability-based future robustness 
of the adaptive test. To this end, a Bayesian ANOVA was run on the simulated dataset. The Bayesian 
H0 for ANOVA (as with the null hypothesis in standard [frequentist] statistics), is that there will be 
no significant difference among test means.  
The descriptives for the simulation are presented in Table 5. 
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Table 5. Simulation Descriptives (N=820) 

  95% Credible Intervals 
Mean SD Lower Upper 
100.29 36.15 97.82 102.76 

The 95% credible intervals indicate that the fluctuations of the item bank mean in future events would 
be less than three LID scale points above and below the mean with an extreme difference of about 
five LID scale points – approximately one quarter of a CEFR level. 
Against the above backdrop, the overall estimation from the Bayesian ANOVA is provided in Table 
6. 

Table 6. Bayesian ANOVA estimations 

Models P(M) P(M|data) BF M BF 01 error % 
Null model 0.5 1 14,830 1  
Simulations 0.5 0.00006 0.00006 14,830 0.0007 

As mentioned, the critical statistic is the BF01 Bayes Factor. This represents the ratio of BF0 (the null 
hypothesis of nil mean differences) to BF1 (the alternative hypothesis of existence of mean 
difference). The target Bayes Factor was 30-100; the figure of 14,830 obtained is far beyond this 
figure, into the range of above 100: “extreme evidence” (after Jeffreys, 1961) in favour of the no 
difference in mean in the ANOVA results. 

Conclusion 

The current study has explored how an item bank used for adaptive testing purposes may be 
assessed in terms of robustness. In the study, item bank stability was investigated using a simulated 
‘full’ dataset generated through model-based imputation. Three hypotheses were pursued in this 
study. 
Hypothesis 1 was that the regression line (R2) value of the simulation would be a minimum of 0.75. 
The R2 values for the simulation was 0.99, and this hypothesis was accepted.  
Hypothesis 2 was that Rasch infit and outfit statistics would be within acceptable ranges at the 25th 
and 75th percentiles. For both live dataset values and simulated dataset values (the latter using the 
‘full’ dataset) at the both percentiles, fit statistics were well within acceptable ranges. This hypothesis 
was therefore also accepted. There was evidence of misfit with outfit mean squares although this was 
only at the maximum value end of the scale. 
Hypothesis 3 was that the Bayes Factor would be in the range of at least 30-100. The Bayes Factor 
which emerged was 14,830 – well above the target of 100, and indicative of “extreme evidence”. 
The conclusion which may be drawn from the comparison of the ‘full’ and (comparatively sparser) 
live dataset was that as the live dataset expands in terms of data points (i.e., items and test takers), 
stability is likely to improve further. Such apparent stability lends credence to the claim that the items 
that comprise the adaptive item bank are of good quality and have been well set – and lends support 
to the robustness of the bank as an assessment instrument. 
The current study has been laying the background for a follow-up study. The ground work – item 
bank stability – has now been established. The follow-up study involves a real-world use of the item 
bank. This study will involve the construction, administration to a representative sample of test takers, 
and analysis of a number of linear tests derived from the adaptive item bank. This study is reported 
in Coniam et al. (2022). 
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While the explorations reported in the current paper relate to the analysis of a specific item bank, the 
methodology may be useful to any researcher developing an item bank. Creating a simulated ‘full’ 
dataset allows for a view of the stability of the item bank to be evaluated, with the two statistics used 
in the current study offering a picture onto stability. A regression line above 0.75 gives a first line 
indication of the stability of the calibration of the item bank. The crucial figures, however, are 
calibration values and the Rasch infit and outfit statistics at the 25th and 75th percentiles. If the infit 
and outfit figures are within acceptable values, this is further evidence of stability in the item bank. 
Finally, a Bayesian ANOVA permits a prediction to be made as to the likely future stability of the 
item bank. If the Bayes Factor obtained from the ANOVA is 30-100 or higher, this is further “very 
strong evidence” as to the likely longterm stability of the item bank. 

Notes 

1. Reference is made in this paper to “one” item bank. It should be noted that LanguageCert tests 
access multiple parallel item banks. 
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