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Abstract: Wind turbine blade is the key component of wind turbine to realize wind energy 
capture, so it is necessary to verify the rationality of blade structure design through full-
scale structural fatigue test. In order to improve the test accuracy and efficiency, this paper 
proposes to establish the dynamic analysis model of the multi-degree of freedom system of 
the tested blade by using the finite beam element to realize the calculation method of the 
load amplitude of the biaxial fatigue test and integrate the dynamic analysis model and the 
target load calculation method into the particle swarm optimization algorithm to realize the 
optimization of the load distribution of the biaxial resonant full-size structure fatigue test. 
Through the design of a biaxial resonant loading scheme of 2.5MW-52.5m wind turbine 
blades, the results show that this method can quickly and accurately adjust the optimization 
parameters such as the position of the exciter and the motion quality of the exciter in the 
flapwise and edgewise on the premise that the fatigue cumulative damage caused by the test 
load is not less than the cumulative damage of the target load. 

1. Introduction 

Wind turbine blade is a key component of wind turbine to convert wind energy into mechanical 
energy. Its performance directly affects the operational reliability and power generation efficiency 
of wind turbines [1]. Due to the harsh working environment, blades subjected to random wind load 
and inertia load coupling effect are very easy to fatigue failure, so the blade fracture caused by 
fatigue has become the main form of wind turbine blade failure [2]. In order to ensure the structural 
reliability of blades, the newly developed or process improved wind power blades must be tested for 
full-scale structural fatigue according to relevant standards before being put into the market, so as to 
check whether the blades meet the fatigue life specified in the design. At present, wind power 
equipment manufacturing enterprises and third-party certification institutions mainly use the 
uniaxial loading mode (as shown in Figure 1) to carry out full-scale structural fatigue tests on 
blades. The test system excites the blade by the inertia force generated by the rotation of the 
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eccentric mass driven by the motor, so that the blade enters the resonance state and vibrates back 
and forth in the flap and edgewise, so as to produce the test load. However, with the continuous 
development of blades to large-scale, uniaxial loading fatigue testing technology has been unable to 
meet the testing requirements of blade quality and reliability [3]. To solve this problem, it is urgent 
to carry out the research of blade biaxial loading fatigue test. 

 

Figure 1: Wind turbine blade uniaxial resonance full-scale structure fatigue test. 
Before the fatigue test of biaxial resonance full-scale structure, the test loading scheme needs to 

be designed to ensure that the fatigue cumulative damage generated by the test load in the key area 
is not lower than that of the target load [4]. Considering the particularity of biaxial resonant loading 
mode, the design of test loading scheme is essential to achieve the consistency between the test load 
in the key area of the blade and the target load distribution by adjusting the position of the exciter 
on the flap and edgewise, the moving quality of the exciter, the position and quality of the fixed 
counterweight of the blade, which belongs to the category of engineering optimization problem [5]. 
However, the design of the biaxial resonance loading test scheme changes the mean value of the 
target load while adjusting the above parameters, which requires recalculation of the target load 
amplitude according to the current loading scheme and judgment of the consistency between the test 
load distribution and the target load distribution. The whole optimization process will become 
relatively complicated, and there is still a lack of effective test load distribution optimization 
method for biaxial resonance full-scale structural fatigue test. 

In view of this, taking the calculation of test load amplitude under biaxial resonant loading as the 
starting point, the tested blade is simplified into a cantilever beam model, and the multi-degree of 
freedom system dynamics analysis of the beam model is carried out by using the finite element 
method to establish the calculation method of test load amplitude, On this basis, the test load 
amplitude calculation method and the target load calculation method proposed in the previous 
research work are integrated into the particle swarm optimization algorithm to optimize the fatigue 
test load distribution of biaxial resonance full-size structure. Finally, the effectiveness of the 
optimization algorithm is verified by designing the biaxial resonance loading scheme of 2.5MW 
wind turbine blades. 

2. Calculation method of test load amplitude based on dynamic analysis of multi degree of 
freedom system 

In fact, under the condition of biaxial resonance loading, the mean value of the test load is 
determined by the blade self-weight, the mass and position of the exciter, and the mass and position 
of the counterweight. The test load amplitude is determined by the inertial load generated by the 
reciprocating motion of the above masses. The calculation of the test load amplitude can be 
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regarded as the steady-state response under the blade resonance state. Through the steady-state 
response analysis results, the variation law of blade displacement with time is established, and the 
derivative is obtained to obtain the acceleration time relationship, so as to obtain the inertial force of 
the blade at any time and realize the calculation of the test load amplitude. 

Considering that the blade under biaxial resonant loading is a continuously distributed mass 
system with infinite degrees of freedom, the motion law of the system needs to be described by a 
function containing both time and space coordinates. It is difficult to directly analyze the motion 
equation from the second-order ordinary differential equations of the finite degrees of freedom 
system to partial differential equations. Therefore, in this section, under the assumption that the 
vibration in the flap and edgewise are independent of each other, the blade model is simplified by 
using the finite element, and the test load amplitude is calculated by solving the steady-state 
response of the multi-degree of freedom damped vibration system. The process is divided into six 
steps: 

Step 1. Simplify the blade model under biaxial resonant loading 
The blade is divided into n segments, and each segment represents a finite element. For any 

element ( )i , its corresponding beam segment is a beam with equal section. The length, bending 

stiffness and mass per unit length of the beam segment are ( )il , ( )iEI and ( )im )1, 2 ,( ,i n=  , 
respectively. The adjacent elements are connected by nodes, with a total of n+1 nodes. Assuming 
that the cross-section of the cantilever beam before and after bending is always plane and 
perpendicular to the main axis, and the vibration in the swing and shimmy directions are 
independent of each other, each node of the finite element has two degrees of freedom, namely 
transverse displacement iu  and plane rotation angle 1, 2, , 1)(i i nθ = + . At this time, the local 
coordinate system of the element coincides with the global coordinate system, The above process 
realizes the transformation from infinite degree of freedom continuous distributed quality system to 
multi degree of freedom discrete quality system, as shown in Figure 2. 

 

Figure 2: Finite element model of blade under biaxial resonant loading. 
Step 2. Calculate the element stiffness matrix and mass matrix 
Taking finite element ( )i  as an example, the displacement field ( )u z  of beam element can be 

expressed as a function of node degrees of freedom iu , iθ , 1iu +  and 1iθ + . considering the load on both 
ends, the equilibrium equation of constant section beam is: 

12



 

( ) ( )4

4

d
0

d
i u z

EI
z

=                                                                              (1) 

Then the general solution of the equation can be described by cubic polynomial: 

( ) 3 2
1 2 3 4u z a z a z a z a= + + +                                                                  (2) 
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According to Equation (3), the undetermined constant ( )1,  2,  3,  4ja j =  in the general solution 
polynomial is replaced with the node degrees of freedom, and the functional relationship between 
the beam element displacement field ( )u z  and the node degrees of freedom iu , iθ , 1iu +  and 1iθ +  can 
be shown in Equation (4) 

( )
( )( )

( ) ( )( )

( )( )
( ) ( )( ) ( )( )

( )( )
( )

( )( )
( ) ( )( )

33 2
3

2 33 2
3

3 2
1 3

23 2
1 3

1 2 3

1 2

1 2 3

1

i i
i

i

i i i
i

i

i
i

i

i i
i

i

u z u z z l l
l

z l z l z l
l

u z z l
l

z l z l
l

θ

θ

+

+

 = ⋅ − +  

 + ⋅ − +  

 + ⋅ − + 

 + ⋅ −  

                                                 (4) 

Let the displacement column vector of the element node [ ]T1 1, , ,i i i iu uθ θ+ +=q , then Equation (4) can 
be further rewritten into matrix form: 
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Where, ( ) ( ) ( ) ( )1 2 3 4, , ,z z z zψ ψ ψ ψ=   ψ  and ( )j zψ  are respectively 

13



 

( )
( )( )

( ) ( )( )

( ) ( ) ( )( ) ( )( )
( )

( )( )
( )

( )
( )( )

( ) ( )( )

3
3 2

1 3

2 3
3 2

2

3 2
3 3

2
3 2

4 3

1 2 3

2

1 2 3

1

i i

i

i i i

i

i

i i

i

z z z l l
l

z z l z l z l

z z z l
l

z z l z l
l

ψ

ψ

ψ

ψ

  = − +   

 = − +

  = − +  



  = −   


                                                  (6) 

Any element ( 1,2,3,4; 1,2,3,4)mnk m n= = in the stiffness matrix ( )ik  of the finite element ( )i  
represents the force generated by the unit displacement of the nth degree of freedom on the mth 
degree of freedom, which can be calculated by Equation (7): 

( ) ( )
( )

0
( )d

il

n nm
i

mk EI z z zψψ ′′ ′′= ∫                                                                (7) 

The stiffness matrix ( )ik of the finite element ( )i  is obtained as: 
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Using the same method, any element ( 1,2,3,4; 1,2,3,4)jkm j k= =  in the mass matrix ( )im  of the 
finite element ( )i  represents the force generated by the unit acceleration of the kth degree of 
freedom on the jth degree of freedom, which can be calculated by Equation (9): 
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The mass matrix ( )im  of the finite element ( )i  is obtained as: 
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Step 3. Overall stiffness matrix and mass matrix of container 
After the calculation of each element stiffness matrix and mass matrix is realized in the second 

step, it is necessary to assemble each element stiffness matrix and mass matrix in a certain order to 
obtain the overall stiffness matrix and mass matrix. Since the blade cantilever model is divided into 
n segments, there are n+1 nodes in the multi degree of freedom system, and each node has two 
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degrees of freedom, then the overall stiffness *k  and mass *m  are (2 2) (2 2)n n+ × +  matrix. 
Considering that the elements of each element stiffness matrix and mass matrix correspond to the 
degrees of freedom of element nodes, after all nodes are uniformly numbered, put the element 
stiffness matrix and mass matrix into the corresponding positions of the overall stiffness matrix and 
mass matrix, and add them to obtain the overall stiffness matrix *k  and mass matrix *m . Taking 
finite elements ( )i  and ( 1)i +  as examples, the position of the stiffness matrix ( )ik  of element ( )i  
corresponding to the overall stiffness matrix *k  is (2 1) (2 2)i i− × + , so ( )ik  is directly placed in the 
corresponding position in . The position of the stiffness matrix ( 1)i+k  of the element ( 1)i +  
corresponding to the overall stiffness matrix *k  is (2 1) (2 4)i i+ × + . Put ( 1)i+k  directly into the 
corresponding position in *k  and sum the part coincident with ( )ik  the whole process is shown in 
Figure 3. 

Step 4. The undamped free vibration differential equation of multi degree of freedom system is 
established, and the natural frequency, main vibration mode, regularization factor and regular 
vibration mode matrix of the system are calculated 

Before establishing the differential equation of motion, the support conditions need to be 
imposed on the system. Considering the degrees of freedom 1 0nu + =  and 1 0nθ + =  at the fixed end of 
the cantilever beam model in Figure 1, only the degrees of freedom of the nodes in front of the fixed 
end need to be considered in the dynamic analysis. Therefore, remove the 2n+1 row, 2n+2 row, 
2n+1 column and 2n+2 column in the overall stiffness matrix *k  and mass matrix *m  of the system 
to obtain the stiffness matrix k  and mass matrix m  of the multi degree of freedom system, both of 
which are 2 2n n×  matrices. Then the differential equation of undamped free vibration of multi 
degree of freedom system is: 

+ =mq kq O                                                                                   (11) 

Since Equation (11) has a non-zero solution, the characteristic polynomial is equal to zero 

( )2det 0ω− =k m                                                                              (12) 

The natural frequency ( 1,2, , 2 )i i nω =   of the multi degree of freedom system is calculated by 
Equation (12), and the corresponding main vibration mode iu  is calculated by substituting iω  into 
Equation (13) 

( )2
i iω− =k m u O                                                                             (13) 

If the modal matrix [ ]1 2 2, , , n=u u u u , the corresponding principal mass matrix M  and 
principal stiffness matrix K  are calculated by Equations (14) and (15) respectively: 
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Where im  and ik  ( 1, 2, , 2 )i n= ⋅⋅⋅  are the ith order principal mass and principal stiffness respectively. 
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Let the regularization factor 1/i imµ = , then the canonical vibration mode matrix ′u  can be 
expressed as 

[ ]1 1 2 2 2 2, , , n nµ µ µ′ =u u u u                                                            (16) 

For the regular mode shape matrix 

( )T′ ′ =u mu I                                                                          (17) 

( )

2
1

T

2
2n

ω

ω

 
 ′ ′ =  
  

u ku                                                              (18) 

 

Figure 3: Schematic diagram of overall stiffness matrix container loading process. 
Step 5. The differential equation of damped forced vibration of multi degree of freedom system 

is established and solved 
During the fatigue test of blade full-scale structure, the excitation frequency is close to the 

natural frequency of the system, and the influence of structural damping on the system vibration 
will be very significant. However, considering that the damping mechanism of blade structure is 
very complex, in order to reduce the difficulty of analysis, Rayleigh damping hypothesis [6] is used 
to describe the blade structural damping: 

α β= +c m k                                                                               (19) 

Where, α  and β  are proportional coefficients, which can be calculated by Equations (20) and 
(21). 

( )f e
e f f e2 2

e f

2ω ωα ω ζ ω ζ
ω ω

= −
−

                                                                   (20) 

( )e f f e2 2
e f

2β ω ζ ω ζ
ω ω

= −
−

                                                                   (21) 
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Where, ζ is the damping ratio, subscripts f and e correspond to the waving direction and swing 
direction respectively, fω , eω , fζ and eζ can be measured through the free attenuation vibration 
experiment of the system [7]. Structural damping is a linear combination of system mass matrix and 
stiffness matrix, therefore 

( )

2
1

T

2
2n

α βω

α βω

 +
 ′ ′ =  
 + 

u cu                                                             (22) 

The differential equation of damped forced vibration of multi degree of freedom system is: 

( ) ( ) ( ) ( )t t t t+ + =mq cq kq F                                                                     (23) 

Where, ( )tF  is the external force on the multi degree of freedom system: 

( ) 0

2

0

sin sin

0 n

t t tFω ω

 
 
 
 = =
 
 
  

0F F




                                                            (24) 

Where, 0F is the amplitude of the excitation force, ω  is the excitation frequency, and the position 
of 0F  in the vector 0F  corresponds to the node position of the exciter. The damped forced vibration 
differential equation of multi degree of freedom system is decoupled by using the regular vibration 
mode matrix ′u , so that ( ) ( )t t′=q u η is substituted into Equation (23) and multiplied by ( )T′u  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T Tt t t t′ ′ ′ ′ ′ ′ ′+ + =u mu η u cu η u ku η u F                                              (25) 

Note the regular excitation force ( ) ( ) ( )Tt t′=N u F  and substitute Equations (17), (18) and (22) 
into Equation (25) 

( ) ( ) ( ) ( )

2 2
1 1

2 2
2 2n n

t t t t
α βω ω

α βω ω

   +
   + + =   
   +   

η η η N 
                           (26) 

Equation (26) corresponds to 2n mutually independent equations, i.e 

( ) ( ) ( ) ( )2 2 sin , 1, 2, , 2i i i i i it t t N t i nη α βω η ω η ω+ + + = = 
                                      (27) 

Then the steady-state response result of Equation (27) is: 

( )
( ) ( )

( )
2 22 2

sin
1 2

i
i i

i i i i

Nt tη ω ϕ
ω λ ζ λ

= −
− +

                                                   (28) 

Where, /i iλ ω ω= , ( ) / 2i i iζ α βω ω= + , ( )1 2tan 2 / 1i i i iϕ ζ λ λ−  = −  . The results in the natural coordinate 
system are converted back to the geometric coordinate system to obtain the steady-state response of 
the system. 
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( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 2 2 2n n nt t t t tµ η µ η µ η′= = + + +q u η u u u                                      (29) 

Step 6. Calculate the test load amplitude 
According to the steady-state response analysis results, the lateral displacement iu  of the ith node 

of the multi degree of freedom system (excluding the fixed end node, 1,2, ,i n= ⋅⋅⋅ ) 

( )2 1 sini i iu q tω ϕ−= −                                                                        (30) 

The corresponding node acceleration ia  obtained by deriving the lateral displacement iu  is: 

( )2
2 1 sini i ia q tω ω ϕ−= − −                                                                     (31) 

If the mass of each section of the cantilever beam is concentrated to the node, the mass im′  of 
each node is: 

( ) ( )

( ) ( ) ( ) ( )1 1

, 1
2

, 2,3, ,
2 2

i i

i i i i i

m l i
m

m l m l i n
− −


=′ = 

 + =


                                                     (32) 

According to Equations (31) and (32), the inertia force of each node is i im a′ ⋅ , then the test load 
amplitude of the section corresponding to any node j  ( 2,3, , )j n= ⋅⋅⋅ is equal to all node inertia forces 
before node j, and the moment is taken for point J, as shown in Equation (33): 

1
2

A,test , 2 1
1

j

j i i ji
i

M m q zω
−

−
=

′= ⋅ ⋅∑                                                              (33) 

Where, jiz  is the longitudinal distance from node i to node j. 

3. Test load distribution optimization method based on particle swarm optimization 

In this section, an optimization method of biaxial resonance full-scale structure fatigue test load 
distribution based on particle swarm optimization algorithm is proposed. The particle swarm 
optimization algorithm is used to control the parameters such as the position and moving mass of 
the exciter, the quantity, position and mass of the counterweight, realize the optimization of the test 
load distribution and determine the test loading scheme on the premise that the average value of the 
target load changes with the optimization parameters. 

Since the stiffness of the blade in the flapwise is less than that in the edgewise, and the bending 
deformation amplitude in the flapwise is usually greater than that in the edgewise, when the blade is 
installed and fixed, make the edgewise of the blade parallel to the horizontal plane and the flapwise 
parallel to the vertical plane. At this time, the stress ratio corresponding to the bending deformation 
in the edgewise of the blade is still -1, while the stress ratio in the flapwise will no longer be equal 
to -1 due to the influence of factors such as blade weight. On this premise, the optimization process 
of test load distribution is divided into seven steps: 

Step 1. 
Import the data of blade stiffness distribution ( )iEI , mass distribution ( )im and length ( )il , and use 

the calculation method of test load amplitude proposed in this chapter to establish the blade finite 
element model (the blade finite element model is divided into n segments, with n+1 nodes, node 1 is 
located at the blade tip and node n+1 is located at the fixed end of blade root, 1,2, ,i n=  ), and 
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determine the position of the section where each node is located. 
Step 2. 
The fatigue load spectrum of the blade is introduced, and the fatigue cumulative damage of the 

section where each node of the blade finite element model is calculated by using the fatigue test 
target load calculation method proposed in Reference [8], and the target load with the stress ratio 

1r = −  in the flap and edgewise of the section is generated respectively. Since the stress ratio 1r = − , 
at this time, the target load mean f

M,target ,iM in the flapwise and the target load mean e
M,target ,iM in the 

shimmy direction of the blade section ( 1,2, , )i i n= ⋅⋅⋅ are equal to 0, while the target load amplitudes 
f
A,target ,iM and e

A,target ,iM are not zero (superscript f and e represent the flap and edgewise respectively, 
subscripts A and M represent the amplitude and mean value respectively, and target represents the 
target load). 

Step 3. 
The optimization parameters are defined as the position fz  and motion mass f

dm  of the vibration 
exciter in the flapwise, the position ez  and motion mass e

dm  of the vibration exciter in the edging 
direction, and then the position ,1qP  of the qth particle ( 1,2, ,q Q= ⋅⋅⋅ , Q  is the total number of 
particles) in the population space of the particle swarm optimization algorithm is: 

( )f f e e
,1 d d(1), (1), (1), (1)qP z m z m=                                                              (34) 

Where, f (1)z , f
d (1)m , e (1)z  and e

d (1)m  are the initial value of the fatigue test loading scheme 
corresponding to the qth particle, which is extracted in a given interval by using the uniformly 
distributed random number generation method. In which fz  and ( )e 0,z L∈ , L is the distance from 
blade tip to blade root, f

dm  and e
d (0,1000]m ∈ , the upper limit of motion mass is set at 1000kg 

according to the load capacity of the exciter. Use the same method to randomly initialize the initial 
value of the velocity of the qth particle: 

,1 ,1q qV P ε= ⋅                                                                              (35) 

Where, ε is the random disturbance of normal distribution (0,0.01)N . After defining the initial 
value of optimization parameters, considering that the vibration exciter is installed and arranged 
along the blade spanwise in the flap and edgewise, it is necessary to update the blade mass 
distribution according to the values of fz  and ez . It can be seen from the values of fz  and ez  that 
the vibration exciters in the flap and edgewise are located in the finite elements of the i  and j  
( , 1, 2, , )i j n= ⋅⋅⋅ sections of the blade respectively, and the mass distribution ( )im  and ( )jm  of the finite 
element are updated as shown in Equations (36) and (37): 

( ) ( )
f f
s d

( )
i i

i

m mm m
l
+

= +                                                            (36) 

( ) ( )
e e
s d

( )
j j

j

m mm m
l
+

= +                                                                   (37) 

Where, f
sm  and e

sm  are the static mass of the exciter. 
Step 4. 
The method proposed in Section 2 is used to calculate the test load amplitude of the loading 

scheme corresponding to the population particles, and the test load amplitude f
A,test ,iM  in the flapwise 

and the test load amplitude e
A,test ,iM  in the edgewise of the blade section i  ( 1, 2, , )i n= ⋅⋅⋅  are obtained. 
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Considering that the mean value of the test load in the edging direction is not affected by the 
loading scheme, the mean value of the test load in the edging direction is e

M,test , 0iM = , and the 
corresponding stress ratio is -1. The mean value of the test load in the flapwise needs to be 
calculated according to the current loading scheme. The mean value of the test load of the section 
corresponding to any node j ( 2,3, , )j n= ⋅⋅⋅ is equal to the gravity of all nodes before node j takes the 
moment of point j, as shown in Equation (38): 

1
f
M,test ,

1

j

j i ji
i

M m g z
−

=

′= ⋅ ⋅∑                                                                     (38) 

Where, im′  is the mass of each node updated according to the mass distribution of the finite 
element in the previous step, jiz  is the longitudinal distance from node i to node j. Since the mean 
value of the test load in the flapwise changes, it is necessary to make the mean value of the target 
load in this direction equal to the mean value of the test load, that is, f f

M,target , M,test ,i iM M= , the method 
proposed in Reference [8] is used to update the target load amplitude f

A,target ,iM . 
Step 5. 
The fitness function obj is defined as shown in Equation (39), which describes the error between 

the test load amplitude and the target load amplitude generated by the corresponding loading 
scheme of each particle: 

f
A,test , f f 2

A,test , A,target ,f
1 A,target ,

e
A,test , e e 2

A,test , A,target ,e
1 A,target ,

1 ( )

1 ( )

n
i

i i
i i

n
i

i i
i i

M
obj M M

M

M
M M

M

=

=

= − −

+ − −

∑

∑
                                                      (39) 

The fitness value of each particle in the current iteration process is compared with the minimum 
fitness value experienced by the particle. If the former is small, the particle is stored in the pbest (i.e. 
the individual extreme value of the particle) for updating, otherwise the pbest remains unchanged. 
Then, the individual extremum stored in the pbest is compared with the fitness value of the particle 
gbest (i.e. the global extremum of the population) corresponding to the minimum fitness of the 
current iteration, and the gbest is updated with the individual extremum with the minimum fitness. 

Step 6. 
Update the velocity and position of the qth particle, as shown in Equations (40) and (41): 

( )( ) ( ), 1 , 1 1 , 2 2 ,q t q t q t q tV u V c r q P c r gbest P+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −pbest                                      (40) 

, 1 , , 1q t q t q tP P V+ += +                                                                          (41) 

Where, 1,2, ,t T=  ( T is the total number of iterations), u  is inertia weight, 1c , 2c  distribution is 
individual learning factor and group learning factor, 1r , 2r  is a random number between 0 and 1, 

( )qpbest  is the best position traveled by the qth particle. 
Step 7. 
Return to step 4 and continue the search until the error between the test load amplitude and the 

target load amplitude reaches the expected requirements or the number of iterations reaches the 
upper limit. At this time, the position fz  and motion mass f

dm  of the exciter corresponding to the 
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global extreme gbest, the position ez  and motion mass e
dm  of the exciter in the edging direction are 

the finally determined fatigue test loading scheme. 
It should be noted that the above test load distribution optimization process does not consider the 

arrangement of counterweight. In fact, the arrangement of vibration exciter and counterweight on 
the blade section will inevitably affect the stress-strain distribution near the installation position. 
The number of counterweights needs to be strictly limited when designing the loading scheme. 
Therefore, in the actual loading scheme design, the test load distribution without counterweight can 
be optimized according to the above process, and whether the counterweight needs to be added can 
be judged according to the results. If the distribution optimization error is large, the two-
dimensional optimization parameters of counterweight position pz  and mass pm  can be added to 
particle position ,q tP accordingly. In addition, considering that there is a certain difference between 
the target load amplitude distribution and the test load amplitude distribution of the blade, if the test 
load amplitude of all sections is consistent with the target load amplitude, it will bring great 
difficulty to the optimization problem. Therefore, when calculating the particle fitness, the error 
between the test load amplitude and the target load amplitude in the key area of the blade can be 
defined as the fitness function, to reduce the difficulty of optimization problems. 

4. Example verification 

This section takes 2.5MW-52.5m blade as an example to verify the effectiveness of the proposed 
method. According to the requirements of the industry standard DNVGL-ST-0376 [9], the load 
distribution of biaxial resonance fatigue test in the area of 0~40% length from blade root to blade 
tip is optimized. The blade is made of glass fiber / epoxy resin composite material. The M-N curve 
parameter m=10 is determined according to the data provided by the designer. The values of 
material strength tR corresponding to the maximum bending deformation and material strength cR  
corresponding to the minimum bending deformation are shown in Figures 4 and 5. The mass 
distribution and stiffness distribution of the blade are shown in Fig. 6 and Fig. 7. Biaxial resonance 
loading is carried out on the blade by means of eccentric mass rotation driven by the motor, in 
which the motor power in the flapwise is 90kW, the motor power in the edgewise is 30kW, the 
static mass of the vibration exciter in the flapwise is f

s 3060kgm = , the static mass of the vibration 
exciter in the edgewise is e

s 1510kgm = , and the length of the rotating arm is 1m. 

 

Figure 4: Values of tR  and cR  in the section of 2.5MW-52.5m wind turbine blade flapwise. 
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Figure 5: Values of tR  and cR  in the section of 2.5MW-52.5m wind turbine blade edgewise. 

 

Figure 6: Mass distribution of 2.5MW-52.5m wind turbine blade. 

 

Figure 7: Stiffness distribution of 2.5MW-52.5m wind turbine blade. 
The blade is divided into 23 sections according to the mass distribution and stiffness distribution 

of the blade. The blade mode is calculated by using the multi degree of freedom system dynamic 
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analysis model of finite beam element proposed in this section. The results are shown in Table 1. 
Among them, the measured value of blade natural frequency is obtained by free attenuation test and 
provided by blade designer. According to the analysis results, the modal prediction results of blade 
on the flap and edgewise are close to the measured results, and the maximum error is not more than 
5%, which verifies the effectiveness of the model. 

Table 1: Modal analysis results of 2.5MW-52.5m wind turbine blades 

 Order Predicted value of 
 natural frequency /Hz 

Measured value of  
natural frequency /Hz Error /% 

Flapwise 
1st order 0.811 0.828 2.05 
2nd order 2.592 2.680 3.28 

Edgewise 
1st order 1.312 1.328 1.24 
2nd order 4.374 4.575 4.39 

The method proposed in this chapter is used to optimize the load distribution of biaxial 
resonance loading fatigue test for 2.5MW-52.5m blades. The optimization parameters are defined as 
the position fz  and motion mass f

dm  of the vibration exciter in the flapwise, the position ez  and 
motion mass e

dm  of the vibration exciter in the edging direction respectively. The optimization 
objective is that the target load amplitude distribution is consistent with the test load distribution 
within the range of 0~40% of the blade spanwise, and the relative error of bending moment is no 
more than 20%. Table 2 gives the value range and optimization results of optimization parameters. 
Due to the introduction of external mass, the natural frequencies of flap and edgewise are reduced 
to 0.77Hz and 1.22Hz respectively, during biaxial resonance loading fatigue test, the vibration 
exciters in two directions will excite the blade near these two frequencies. Figure 8 shows the 
distribution of the test bending moment amplitude and the target bending moment amplitude of the 
blade. From the distribution results of the edgewise, it can be found that the loading scheme does 
not change the target load amplitude in this direction, and the test load amplitude within 0~40% of 
the spanwise of the optimized blade is greater than the target load amplitude. At the same time, due 
to the arrangement of the flapwise exciter at the blade spanwise 22.17m, the introduced static mass 
of the exciter makes the load amplitude curve of edging test appear a break point at this position. 
From the results of flapwise distribution, it can be found that the target load amplitude changes due 
to the introduction of the external mass of the loading scheme. The introduction of external mass 
increases the average value of the target load of each section within the range of 0~40% of the blade 
spanwise and makes the section stress ratio 1r −＜ . However, considering that the total fatigue 
cumulative damage of the section remains unchanged, the amplitude of the target load decreases 
and the amplitude of the decrease from the blade root to the blade tip gradually weakens. 

Table 2: Optimal parameter values of test load distribution of 2.5MW-52.5m wind turbine blades 

Optimization 
parameters 

Position of 
vibration exciter 
in flapwise /m 

Motion 
quality 

/kg 

Position of vibration 
exciter in edgewise 

/m 

Motion 
quality 

/kg 

Flapwise 
frequency 

/Hz 

Edgewise 
frequency 

/Hz 
parameter 

value range 0~52.5 0~1000 0~52.5 0~1000   

optimization 
results 22.17 488.82 42.49 163.04 0.77 1.22 

Figure 9 shows the relative error between the spanwise test bending moment amplitude and the 
target bending moment amplitude of the optimized blade, which is calculated by Equation (42). 
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From the relative error between the test bending moment amplitude and the target bending moment 
amplitude, it can be found that the relative error in the edging direction is controlled within 20%, 
and the relative error is small at both ends and large in the middle within the optimization range of 
0~40% of the blade spanwise, while the relative error in the flapwise fluctuates greatly, and the test 
load amplitude of some sections is lower than the target load amplitude. The reason for this 
phenomenon is that the target load amplitude distribution is determined by the fatigue cumulative 
damage of the blade section under 20-year working condition. For the edging direction, the main 
load leading to the fatigue cumulative damage is the bending moment caused by the blade self-
weight, so the target load amplitude distribution is close to the smooth curve. The amplitude 
distribution of the test load in the edging direction is determined by the bending moment caused by 
the self-weight of the blade and the inertia force of the reciprocating motion of the external mass. 
Although it is different from the target load amplitude distribution, it is generally close to the 
smooth curve. Therefore, the relative error in the edging direction is small at both ends and large in 
the middle. The fatigue cumulative damage under the condition of blade is mainly caused by 
random wind load. There are certain differences in the damage size of each section, and the target 
load amplitude distribution is no longer continuous. However, the test load amplitude distribution in 
flapwise is still determined by the inertia force of blade self-weight and reciprocating motion of 
external mass. Therefore, the relative error in flapwise presents a certain fluctuation. 

A,test , A,target ,

A,target ,

100%i i

i

M M
M

δ
−

= ×                                                        (42) 

 

Figure 8: Distribution of blade spanwise test bending moment amplitude and target bending 
moment amplitude. 

 

Figure 9: Relative error between blade spanwise test bending moment amplitude and target bending 
moment amplitude. 
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5. Conclusion 

In this paper, the optimization method of fatigue test load distribution of biaxial resonant full-
scale structure is studied. Taking the multi-degree of freedom system dynamic analysis model based 
on finite beam element as the starting point, the calculation method of test load amplitude is 
established. On this basis, the calculation method of test load amplitude and the target load 
calculation method are integrated into particle swarm optimization algorithm, the load distribution 
optimization of biaxial resonance full-scale structure fatigue test is realized. Finally, the 
effectiveness of this method is verified by designing the biaxial resonance loading scheme of 
2.5MW-52.5m wind turbine blades. The results show that the method proposed in this chapter can 
quickly and accurately adjust the optimization parameters such as the position of the exciter in the 
flap and edgewise and the motion quality of the exciter on the premise that the fatigue cumulative 
damage generated by the test load in the specified area of the blade is not less than the cumulative 
damage of the target load, it can provide a theoretical reference for the distribution optimization of 
fatigue test load of biaxial resonance full-scale structure. 
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