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Abstract: Due to the low ability of fault feature extraction in analog circuits, it is impossible 
to classify components in analog circuits. A multi-input convolutional neural network (MIL-
CNN) model based on attention mechanism is proposed. In the fault diagnosis experiment, 
the circuit of the two-stage four-op amplifier double-second order low-pass filter of the 
model has better comprehensive performance and can effectively realize the efficient 
classification and location of all faults. 

1. Introduction 

Analog circuits are increasingly widely used in integrated circuits and other fields [1-3], so 
accurate and efficient diagnosis of analog circuit faults has become a research hotspot in the field of 
circuit testing. 

In early analog circuit fault diagnosis, there are mainly adjoint network method, network tearing 
method and fault diagnosis theorem [4], but due to limited application and complex calculation, it is 
not suitable for nonlinear analog circuit fault diagnosis. Although wavelet transform and other signal 
processing methods have been widely used in fault feature extraction and diagnosis of nonlinear 
systems [5-7], signal processing methods tend to ignore essential features during feature extraction, 
resulting in low efficiency and accuracy of fault diagnosis of nonlinear analog circuits [8-10]. In order 
to solve this problem, BP neural network, support vector machine (SVM), Extreme Learning Machine 
(ELM) and other data-driven artificial intelligence methods have widely entered the research field. 
Su et al. [11] proposed to use DBN to extract features, which used the Grey Wolf optimization (GWO) 
algorithm to optimize SVM for classification. Zhang et al. [12] used differential Evolution (DE) 
algorithm to optimize model parameters and proposed DE-ELM model, which improved the accuracy 
of fault diagnosis. 

In recent years, deep science has been widely used in the field of fault diagnosis due to its strong 
ability of data feature extraction and excellent ability of describing nonlinear fault dynamics [13-15].  

As can be seen from the above literature, the authors only conduct fault diagnosis from a single 
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perspective of time domain or frequency domain. Therefore, this paper constructed a multi-input 
convolutional neural network model (MIL-CNN). The fault diagnosis of double-order low-pass filter 
of two-stage four-op amplifier is taken as an example, and the comprehensive performance of mil-
CNN model is verified 

2. Materials and methods 

The multiple-convolutional neural networks (MIL-CNN) model is adopted in this paper, and its 
structure is shown in Figure 1. The multi-input layer of MIL-CNN can combine the time domain 
information graph and frequency domain information graph of fault data.   

The order of Net1 and Net2 layers is convolution layer + ReLU, BN layer and pooling layer 
respectively. Convolutional layer is used to extract the feature of input information. BN layer can 
reduce the risk of overfitting.  Pooling layer can reduce computation. The Net2 and Net1 processes 
are the same. Net3 connects the time domain feature information of Net1 with the frequency domain 
feature information of Net2, and finally sends the output value to the classifier for classification. 

 

Figure 1: MIL-CNN model 

Taking two-stage four-op amplifier double-order low-pass filter (figure 2) as the object, the 
capacitance and resistance deviate from the normal tolerance range under the interference of the 
components in the circuit in the external environment. The performance verification of the MIL-CNN 
diagnostic model was verified by simulation in terms of large size, small size and no fault. 

 

Figure 2: Two-stage four-op amplifier double-order low-pass filter 
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The circuit is built in Multisim environment, and the pulse signal with voltage of 10V and 
frequency of 1000Hz is added at both ends of the circuit to collect fault data, and 160000 data are 
collected for each type of fault. To solve the problem of insufficient data, overlapping sampling is 
used to enhance data. Label each type of fault and use it as the first input data from Net1; The 
frequency domain information graph obtained by image Fourier transform is used as the input data 
of the second subnetwork Net2 network. 

The specific steps of the experimental process in this paper are as follows:   
1) Add pulse signals at both ends of the circuit under test to take fault data.   
2) Classify fault data and add category codes.   
3) Using image processing technology to expand the data set, get the time domain image set, and 

use the image Fourier transform to get the frequency domain data set.   
4) Divide the picture set into training set, test set and verification set.   
5) Set up MIL-CNN model, use training set to train model, verify set to adjust network model to 

achieve the optimal model.   
6) The actual coding of the test set is compared with the predictive coding generated by the model. 

Table 1: Classification of severity of drought-affected areas 

Grade Scope of influence Station proportion of drought frequency 
1 Global Drought Pj≥50% 
2 Regional Drought 50%>Pj≥33% 
3 Partial Regional Drought 33%>Pj≥25% 
4 Local Drought 25%>Pj≥10% 
5 No Obvious Drought Pj<10% 

3. Results and analysis 

In order to verify the effectiveness and superiority of the proposed MIL-CNN network in fault 
diagnosis of complex circuits, a two-stage four-op amplifier double-second-order low-pass filter was 
used for simulation verification. R3, R4, R6, R7, R9 and capacitors C2 and C4 were selected as 
research objects. The failure modes are shown in table 2. 

Table 2: Fault mode of two-stage four-op amplifier double-order low-pass filter 

Fault code Fault type Tolerance range/% Nominal value The fault value 
f1 Normal — — — 
f2 R3 increase 5 3kΩ 4.5kΩ 
f3 R3 decrease 5 3kΩ 1.5kΩ 
f4 R4 increase 5 1570kΩ 2355kΩ 
f5 R4 decrease 5 1570kΩ 785kΩ 
f6 R6 increase 5 10kΩ 15kΩ 
f7 R6 decrease 5 10kΩ 5kΩ 
f8 R9 increase 5 2640Ω 3960Ω 
f9 R9 decrease 5 2640Ω 1320Ω 
f10 C2 increase 5 0.01nF 0.005nF 
f11 C2 decrease 5 0.01nF 0.015nF 
f12 C4 increase 5 0.01nF 0.005nF 
f13 C4 decrease 5 0.01nF 0.015nF 
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Table 3: Average accuracy of fault diagnosis for two-stage four-op amplifier  
double-order low-pass filter 

Method Average accuracy/% 
WTF+PCA+ELM 50.93 
WTF+PCA+BP 73.24 

WTF+PCA+SVM 85.72 
CNN 88.93 

MIL-CNN 93.82 
 

As can be seen from table 3, the average accuracy of MIL-CNN is 98.52%. MIL-CNN has better 
performance than traditional CNN, and in complex circuits, data is preprocessed first, so shallow 
learning cannot effectively classify faults. 

According to the above, MIL-CNN does not require complex data preprocessing, splicing 
information in time domain and frequency domain, and acquiring more comprehensive features.  
Compared with other methods, the proposed method has obvious advantages in complex circuits. 

4. Conclusions and Discussion 

A fault diagnosis model for MIL-CNN analog circuit is proposed in this paper. The main 
conclusions are as follows: 

According to the diagnostic experiment results of double-second order low-pass filter of two-stage 
four-op amplifier, the fault diagnosis ability of MIL-CNN network is better than that of traditional 
CNN. MIL-CNN greatly improved their feature extraction ability and learning ability.  Compared 
with shallow learning, MIL-CNN network is more suitable for analog circuit fault diagnosis, 
providing a new solution for analog circuit fault diagnosis and other fields 
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