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Abstract: Based on the rolling horizon optimization strategy, the networked robust 
predictive control with medium access constraints and packet loss is studied. Firstly, 
considering the influence of network factors such as medium access constraints and packet 
loss, Markov jump rule and Bernoulli independent and identically distributed process are 
used to transform the network problem into the robust problem of networked control 
system. According to the established Markov jump system model and stability analysis, a 
robust predictive controller for networked control systems is designed by using linear 
matrix inequality (LMI) method, which makes the system asymptotically stable. Finally, a 
numerical example is given to verify the effectiveness of the proposed control 
method.Networked control system; medium access constraints; packet loss; robust 
predictive controller. 

1. Introduction 

Networked control system is more and more widely used in our real life. It is a closed-loop 
control system formed by sensors, controllers and actuators through real-time network[1]. 
Networked control system is a new technology formed in the field of automatic control. It is a new 
product integrating the principles of communication, computer and automatic control. Its main 
components include sensors, controllers and actuators. The wide application of networked control 
system benefits from its many advantages. Compared with traditional control system, The 
networked control system reduces the system wiring, can share information in real time, greatly 
improves the reliability of the system, and can also carry out remote control[2,3]. Because the 
network communication is carried out in data packets, the data packets can not only contain the data 
information of the current time, but also the data information of the past and the future, This is what 
the traditional control system can not do. Networked control system has penetrated into automation, 
microgrid, computer and communication and principle, and solved many problems that are difficult 
to be solved by traditional control system. Moreover, in the actual production, many key problems 
have been solved, and the productivity level of the enterprise has been greatly improved. It is 
widely used in power system, urban rail transit, industrial heating furnace, new energy equipment, 
cloud control system, aerospace, industrial automation, transportation and so on. While providing 
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convenience, networked control system also has some problems that can not be ignored. The 
problems of media access constraints and packet loss in networked control system are also very 
common. 

Media access constraints have a great impact on system stability. The so-called media access 
constraints are that because the bandwidth of each network is limited, at any time, only a few 
sensors and actuators will obtain channel access rights for data transmission and exchange[4]. 
People have conducted in-depth research on the problems caused by media access constraints. The 
authors of [5] studies the linear steady network control problem with medium access constraints. 
The system is modeled as a switched system, and then the sufficient conditions for the stability of 
the system are given on the basis of dwell time by using Lyapunov function method. The authors of 
[6] studies the minimum data rate problem of networked control systems under media access 
constraints. In order to make the system stable, a new analysis method of unstable scalar and vector 
is established, and finally the necessary and sufficient conditions for system stability are obtained. 
The authors of [7] studies the second-order multi-agent formation problem of wireless networks 
under media access constraints. By designing the agent node scheduling protocol, the qualified 
agent nodes can transmit information through the network. The authors of [8] studies the event 
triggered collaborative design method of nonlinear networked control systems with medium access 
constraints. On the basis of considering nonlinear dynamics, an event triggered scheme with 
adjustable trigger conditions is proposed. For networked control systems with media access 
constraints, different analysis methods are used to make the system asymptotically stable, but only a 
single media access constraint problem is considered in the above literature, which is not practical 
in practice. 

Packet loss is also one of the common problems in networked control system. Packet loss is a 
phenomenon that the transmitted data cannot reach or reach the next node in time based on the 
reliability of the network itself and the influence of the network environment[9]. For some control 
systems with robust performance, although a certain probability of packet loss can be allowed, it 
will also have a certain impact on the system performance, which may lead to system instability. 
The impact of packet loss on system performance is also an important factor worthy of attention. 
Under this background, many scholars have conducted in-depth research on packet loss. Aiming at 
the problem of random packet loss, literature [10] estimates the state of networked control system, 
and eliminates various effects of packet loss on system state estimation by solving linear matrix. 
The authors of [11] studies the simultaneous estimation of equipment state and packet loss at each 
time step. After solving the problem, two solutions are proposed. Finally, an example is given to 
verify the effectiveness of the proposed method. The authors of [12] studies the problem of fault 
detection in nonlinear networked control systems. Assuming that data packets are lost during data 
transmission, it is modeled as a white noise sequence with Bernoulli distribution. The authors of 
[13] studies the dynamic output feedback fuzzy control problem triggered by adaptive events. The 
data packet loss is described by Bernoulli random process, and a fuzzy dynamic output feedback 
controller is designed to ensure the stability of the system. The above literature designs the 
controller through different methods for the networked control system with packet loss, so that the 
system can reach an asymptotically stable state in case of network packet loss. However, in reality, 
media access constraints and packet loss usually exist at the same time. The above control method 
for a single network problem is relatively conservative. Now most research work is based on an 
ideal assumption, that is, the system noise and process noise meet the white noise of Bernoulli 
distribution. In the actual industrial process, the noise is not the white noise that simply meets the 
characteristics of Bernoulli distribution, but some information sources with limited energy. If we 
ignore these practical useful information, it will inevitably reduce the estimation accuracy and 
estimation performance. 
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However, most literatures only consider the influence of a single factor, which makes the system 
performance not optimal. In this paper, considering the influence of network factors such as 
medium access constraints and packet loss, the network problem is transformed into the robustness 
problem of networked control system by using Markov jump rule and Bernoulli independent 
identically distributed process. According to the established Markov jump system model and 
stability analysis, a robust predictive controller for networked control system is designed by using 
linear matrix inequality method, so that the system can reach asymptotic stability. 

2. Model establishment 

 
Fig. 1 The structure of networked control systems 

Considering the NCS shown in Figure 1, the linear discrete system model of the controlled 
object is 

( )( +1)= ( ) ( )+x k Ax k Bu k D kω+                                                              (1) 

where nx R∈ is the state vector; mu R∈ is the input vectors, respectively, , ,A B D  representing 
constant matrices of appropriate dimensions. In addition, it is assumed that the system noise is not 
white noise, but regarded as an unknown bounded deterministic variable. 

The NCS in Figure 1 has m actuators and n  sensors. Information is exchanged between the 
controller and the actuator through the network, and there are no communication constraints 
between the controller and the sensor. Due to the limitation of network bandwidth, only p (1 )p m≤ <  
actuator can obtain the communication channel in each sampling period and execute the control 
command transmitted by the controller, therefore, there are p

m mN C=  media access modes for the 
actuator end of NCS. In addition, control packet loss may occur randomly during transmission due 
to node failure, network congestion or communication noise. 

In order to describe the media access state of the actuator, the following binary functions are 
defined ( )i kρ : 
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where ( ) 0=iu k indicates that ( )iu k  has not obtained the communication channel; ( ) ( )=i iu k u k

indicates that ( )iu k  has obtained the communication channel. Then the channel access state of the 
actuator at time k  can be represented by the communication sequence [ ]1 2( ) ( ), ( ), , ( ) T

mk k k kρ ρ ρ ρ=  . 
Note, { }( ) diag ( )M k kρ ρ= , then the input of the controlled object is 

ˆ( ) ( ) ( )u k M k u kρ=                                                                                 (2) 

Assuming that the switching between two adjacent sampling periods ( )M kρ  follows a Markov 

random process, and ( )M kρ  is taken from the finite set { }
1

Ni

i
M ρ =

 to meet the following conditional 
probability: 

{ }( +1)= | ( )j i
r ijp M k M M k Mρ ρ ρ ρ π= = , { }( ) ( )i

r ip M k M kρ ρ π= =                                  (3) 

where 0ijπ >  represents ( )M kρ  from i  mode to j  mode, ,i j N∈ , 
1

1
N

ij
j
π

=

=∑ . 0iπ  is the initial 

probability of i  mode. The probability distribution of each mode at time k  is 
[ ]1 2( ) ( )  ( )    ( ) T

Nk k k kπ π π π=   and ( 1) ( )Tk kπ π π+ = . 
it is assumed that the control rate of the system is given by state feedback 

( ) ( ) ( )u k K k x k=                                                                       (4) 

For the packet loss problem, we introduce a binary random variable ( ), 1, ,i k i mσ =   to represent 
the media access state of the packet loss process at time k . When the packet is successfully 
transmitted to the actuator ( ) 1i kσ = , when the packet is lost during transmission ( ) 0i kσ = . It is 
assumed that for the case of any packet loss, it conforms to the Bernoulli random process of 
independent and identically distributed, and has the following probability distribution: 

{ } { } { } { }( ) 1 ( ) , ( ) 0 1 ( ) 1r i i i r i i ip k E k p k E kσ σ σ σ σ σ= = = = = − = −                              (5) 

where [ ]0,1iσ ∈  is a known constant, which represents the arrival probability of the i  channel 
packet of the control input. Considering the impact of packet loss, the final control signal received 
from the actuator can be expressed as follows: 

( ) ( ) ( )ˆu k N k u kσ=                                                                            (6) 

where ( ) { }1 2( ), ( ), , ( )mN k diag k k kσ σ σ σ=   represents the probability matrix of successful 
transmission of control signal. 

Based on equations (1), (2) and (6), the discrete model of networked control system can be 
described as 

( ) ( ) ( ) ( ) ( ) ( )1 +x k Ax k BN k M k u k D kσ ρ ω+ = +                                                  (7) 
3. Main results 

3.1 Stability analysis 

Before the analysis of the main results, the following lemmas are given: 
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Lemma1[14]: Assumed symmetric matrix , where , then the following 

conditions are equivalent: 
(1) . 
(2) , . 
(3) , . 
Lemma2[14]: ,H E is a real matrix with appropriate dimension, F  is a positive definite symmetric 

matrix and satisfies TF F I≤ , then there is a scalar 0ε > such that the following inequality holds: 
1T T T T THFE E F H HH E Eε ε −+ ≤ +  

As we all know, model predictive control has the advantages of good control effect and strong 
robustness. It can deal with various constraints in controlled variables and operating variables. 
Firstly, the following prediction model is given: 

( ) ( ) ( )
( ) ( ) ( ) ( )

+1| | |

                     = | + | , 0

x k l k Ax k l k Bu k l k

Ax k l k BN k l M k l u k l k lσ ρ

+ = + + +

+ + + + ≥
                               (8) 

where ( )|x k l k+  represents the system state of predicting the k l+  time based on the known 
information of k  time, and ( )|u k l k+  represents the controller output of predicting the k l+  time 
based on the known information of k  time, then the prediction output sequence 0U ∞  of the controller 
can be expressed by the following formula: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 1 1| , , | : | | , 1mU k u k k U k U k u k l k R u k l k K k x k l k l∞ ∞ ∞ = = + ∈ + = + ≥                 (9) 

Among them, ( )|u k k  is the first element in the prediction output sequence 0U ∞  and satisfies 
( ) ( )|u k u k k= , the prediction output 0U ∞  can be calculated by the feedback control law ( )( )| 1u k l k l+ ≥  

at k  time. Based on the quadratic performance index ( )J k  in infinite time domain, the networked 
robust predictive control problem of solving the predictive output sequence 0U ∞  at k  time can be 
transformed into the following online optimization problem: 

( ) ( ) ( ) ( ) ( )
0 0

2 2

0
min  max  min  max | + |Q R

U U l
J k x k l k N k l M k l u k l kσ ρ∞ ∞

∞

=

 = + + + + ∑      

( ) ( )
0

0 1 min  max
U

J k J k
∞

= +                                                                                   (10) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 | | | |
TTE J k E x k k Qx k k N k M k u k k R N k M k u k kσ ρ σ ρ

    = +        
 

( ) ( ) ( ){

( ) ( ) ( ) ( ) ( ) ( ) }
1

0
| |

                     + | |

T

l

T

E J k E x k l k Qx k l k

N k l M k l u k l k R N k l M k l u k l kσ ρ σ ρ

∞

=

= + + +   


   + + + + +    

∑
 

where the symmetry matrix 0TQ Q= > , 0TR R= >  are the state and input weighting matrix, 
( )|u k k  is the optimization variable in the objective function. Assuming that the state ( ) ( )|x k x k k=  of 

the system is measurable at k  time, the control goal is to adjust the initial state ( )0x  of the system 
to the origin. 

The above optimization problem is Min Max−  optimization problem with infinite optimization 
variables, a linear state feedback control strategy ( ) ( ) ( )| | , 1u k l k K k x k l k l+ = + ≥  is used to obtain the 

11 12

21 22

S S
S

S S
 

=  
 

11
r rS R ×∈

0S <

22 0S < 1
11 12 22 12 0TS S S S−− <

11 0S < 1
22 12 11 12 0TS S S S−− <
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predictive output of the controller. In order to simplify the optimization problem and ensure the 
asymptotic stability of the system, an upper bound of the performance index ( )J k  and a mandatory 
inequality constraint are constructed. First, define the quadratic function as follows: 

( )( ) ( ) ( ) ( )| | |T
kV x k l k x k l k P s x k l k+ = + + , 0P > , 1l ≥                              (11) 

Where, { },ks k N∈  is the Markov chain taking value in finite space { }1,2, ,S L=  . The transition 
probability from the i  mode to the j  mode at k  time is { }1Pr |ij k ks j s iς += = = , 0, ,ij i j Sς ≥ ∈  and 

1
1

L

ij
j
ς

=

=∑ . 

Equation (11) can be rewritten as 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )| | | | |T T
kV x k l k x k l k P s x k l k x k l k P i x k l k+ = + + = + +                   (12) 

the following robust stability constraints are satisfied: 

( ) ( ) ( ) ( ) ( ) ( )( )2 21| | | |Q RV k l k V k l k x k l k N k l M k l u k l kσ ρ+ + − + < − + + + + +                     (13) 

under the condition that the system (7) is asymptotically stable, ( )| 0x k∞ =  and ( )| 0V k∞ = , 
calcumlate and sum equation (13) from 1l =  to l = ∞  and take the expectation  

( ) ( )( )1max 1|E J k E V x k k < +                                                         (14) 

let ( )kγ  be the upper bound of ( ) ( )( )0 1|J k V x k k+ + , the optimization problem of robust predictive 
control for system (7) can be further described as: 

( ) ( ) ( )
( )

| , ,
min

u k k K k P i
kγ                                                                 (15) 

and meet the constraints (13) and mandatory constraints 

( ) ( ) ( ) ( ) ( ){ ( ) ( ) ( )max | | | |
TTx k k Qx k k N k M k u k k R N k M k u k kσ ρ σ ρ   +      

( ) ( ) ( )} ( )1| 1|Tx k k P i x k k kγ+ + + <                                                 (16) 

Theorem 1: Assumes that the state of networked control system (7) is measurable. For a given 
matrix ( )K k  and controller output ( )|u k k , if there is a well dimensioned matrix ( ) 0P i > , ( ) 0P j >  
and scalar ( ) 0kγ > , the infinite time domain performance index ( )J k  has a minimum upper bound 

( )
( )min

P i
kγ                                                                     (17) 

and the following constraints are satisfied: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1

+ 0
0

0

T T T TP i Q K k M k N k N k M k K k A P j I
P j P j B

R I
I

ρ σ σ ρδ

δ

−

 − +
 ∗ −  <
 ∗ ∗ −
 

∗ ∗ ∗ −  

        (18) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1/2 1/2

1/2

| | | | 0
0 0

00 0

T T T T T Tk u k k M k N k N k M k u k k A P j Q x k k R u k k
P j P j B

I
I R

I

ρ σ σ ργ δ

δ

 − +
 ∗ − 
  <∗ ∗ −
 

∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ − 

      (19) 

then the networked control system (7) is asymptotically stable and has certain control 
performance ( )kγ . 

Proof:Firstly, a sufficient condition for the robust stability of networked control system (7) is 
proved, so that inequality (18) holds. It can be obtained from equation (8), equation (12) and 
equation (13) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )| |
TT

jx k l k A BN k M k K k P k A BN k M k K k x k l kσ ρ σ ρ   + + + +     

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2| | | | 0T
i Q Rx k l k P k x k l k x k l k N k M k K k x k l kσ ρ− + + + + + + <               (20) 

inequality (21) can be obtained by applying lemma 1 to inequality (20), 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1

+

0 0

T T TP i Q A BN k M k K k P j K k M k N k

P j
R

σ ρ ρ σ

−

  − +  
 ∗ − <
 

∗ ∗ −  

                   (21) 

inequality (21) can be decomposed into 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1

+ 0
0 0 0 0 0 0

0

T T

T T

P i Q A P j I K k M k
P j P j B N k M k K k N k B P j I

R I

ρ

σ ρ σ
−

   −  
       ∗ − + + <       
    ∗ ∗ −     

(22) 

inequality (23) can be obtained by applying lemma 2 to the inequality (22) 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
0

0 0 0 0
0

T

T T

K k M k
P j B N k M k K k N k B P j I

I

ρ

σ ρ σ

  
      +      
     

 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1

0
0 0 0 0
0

T

T

K k M k
N k N k M k K k P j B P j B I

I

ρ

σ σ ρδ δ −

   
    ≤ +        
     

         (23) 

obviously, if the inequality (24) holds: 

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1

1

+ 0
0 0 0 0 0 0

0

T T

T

P i Q A P j I K k M k
P j N k N k M k K k P j B P j B I

R I

ρ

σ σ ρδ δ −

−

   −  
      ∗ − + + <         
     ∗ ∗ −     

(24) 

then inequality (18) can be proved by lemma 1. 
Next, it is proved that inequality (19) holds, system (7) has certain control performance, 

inequality (16) can be further transformed into 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )| | | |
TTx k k Qx k k N k M k u k k R N k M k u k kσ ρ σ ρ   +      
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )| | | |
T

Ax k k BN k M k u k k P j Ax k k BN k M k u k k kσ ρ σ ρ γ   + + + <    (25) 

inequality (26) can be obtained by applying lemma 1 to inequality (25) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1/2 1/2| | |
0 0

0

T T T T T Tk x k k A P j Q x k k R u k k M k N k
P j

I
I

ρ σγ −
 ∗ − 
 ∗ ∗ −
 

∗ ∗ ∗ −  

 

( ) ( ) ( ) ( )0 | 0 0
0 0 0

  0
0 0

0

T T T Tu k k M k N k B P jρ σ 
 ∗ + <
 ∗ ∗
 
∗ ∗ ∗  

               (26) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1/2 1/2| | |
0 0

0

T T T T T Tk x k k A P j Q x k k R u k k M k N k
P j

I
I

ρ σγ −
 ∗ − 
 ∗ ∗ −
 

∗ ∗ ∗ −  

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0 |
0

| 0 0 0 0 0 0 0
0 0
0 0

T T

T T

u k k M k
P j B

N k M k u k k N k B P j

ρ

σ ρ σ

  
  
     + + <     
  
    

   (27) 

inequality (28) can be obtained by applying lemma 2 to inequality (27) 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0 |
0

| 0 0 0 0 0 0
0 0
0 0

T T

T T

u k k M k
P j B

N k M k u k k N k B P j

ρ

σ ρ σ

  
  
      +     
  
    

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1

0|
0

| 0 0 0 0 0 0
00
00

T T

T T

u k k M k
P j B

N k N k M k u k k B P j

ρ

σ σ ρδ δ −

   
   
      ≤ +      
   
    

 (28) 

if the matrix inequality of equation (29) holds: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1/2 1/2| | |
0 0

0

T T T T T Tk x k k A P j Q x k k R u k k M k N k
P j

I
I

ρ σγ −
 ∗ − 
 ∗ ∗ −
 

∗ ∗ ∗ −  

 

( )

( ) ( ) ( ) ( ) ( ) ( )1

0|
0

| 0 0 0 0 0 0 0
00
00

T T

T T

u k k M
P j B

N k N k M k u k k B P j

ρ

σ σ ρδ δ −

   
   
      + + <      
   
    

     (29) 

then the inequality (27) holds, from lemma 1, inequality (29) is equivalent to inequality (19). 
Proof complete. 
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3.2 Robust predictive controller design 

Theorem 2: It is assumed that the state of the networked control system (7) is measurable, if 
there is a matrix ( )1 0X k > , ( )2 0X k > , ( )Y k , scalar 0δ > , controller output ( )|u k k and scalar ( )kγ  
enable the performance index ( )J k  with minimum upper bound,  

( ) ( ) ( ) ( )
( )

1 2, , , |
min

X k X k Y k u k k
kγ                                                             (30) 

and the following constraints are satisfied: 

( ) ( ) ( ) ( ) ( ) ( )
( )

1/2
1 1 1

2
1

0
0 0

00 0
0

T T T

T

X k X k A Y k M k N k Q X k
X k BB B

R I
I

I

ρ σ

δ δ
δ

δ

−

 −
 ∗ − + 
  <∗ ∗ − +
 

∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ − 

               (31) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1/2 1/2

2

| | | |
0 0 0

00 0
0

T T T T T T T

T

k x k k A Q x k k R u k k u k k M k N k
X k BB

I
I

I

ρ σγ
δ

δ

 −
 ∗ − + 
  <∗ ∗ −
 

∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ − 

        (32) 

then the networked control system (7) is asymptotically stable and has a given control 
performance ( )kγ , control gain ( )K k  can be obtained from the following formula: 

( ) ( ) ( )1
1K k Y k X k−= , ( ) ( )1

1P i X k−= , ( ) ( )1
2P j X k−=                         (33) 

Proof: Firstly, a sufficient condition for the robust control performance of networked control 
systems is proved, the establishment of matrix inequality (31), let ( ) ( )1

1P i X k−= , ( ) ( )1
2P j X k−= , the 

matrix inequality (20) can be obtained by applying lemma 1 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )1

1

+

0 0

T T TP i Q A BN k M k K k K k M k N k

P j
R

σ ρ ρ σ

−

−

  − +  
 ∗ − <
 

∗ ∗ −  

                  (34) 

where ( )P i , ( )P j  is a nonsingular matrix. Contract transformation is performed on equation 
(34), that is, the left and right sides are multiplied by the diagonal matrix at the same time 

( ){ }1 , ,diag P i I I− , inequality (35) can be obtained by combining formula (33) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
1 1 1 1

2
1

+

0 0

T T TX k X k QX k AX k BN k M k Y k Y k M k N k

X k
R

σ ρ ρ σ

−

  − +   
 ∗ − <
 

∗ ∗ −  

        (35) 

inequality (35) can be rewritten as 
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( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( )

( )

1 1 1 1

2
1

0
0

0
0 0 0 0 0

0

T

T

T T

X k X k QX k X k A
X k

R

Y k M k
B N k M k Y k N k B I
I

ρ

σ ρ σ

−

 − +
 ∗ − + 
 ∗ ∗ − 

  
      + <     
     

               (36) 

inequality (37) can be obtained by applying lemma 2 to the left of inequality (36) 

( ) ( ) ( )
( ) ( )

( )
0

0 0 0 0
0

T

T T

Y k M k
B N k M k Y k N k B I
I

ρ

σ ρ σ

  
      +      
     

 

( ) ( )
( ) ( ) ( ) ( )1

0
0 0 0 0

0

T

T T

Y k M k
B B I N k N k M k Y k
I

ρ

σ σ ρδ δ −

  
      ≤ +      
     

             (37) 

if the inequality (37) holds: 
( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )
1 1 1 1

1
2

1

0 0
0 0 0 0 0 0

0

T T

T T

X k X k QX k X k A Y k M k
X k B B I N k N k M k Y k

R I

ρ

σ σ ρδ δ −

−

   − +  
        ∗ − + + <       
    ∗ ∗ −     

 (38) 

then inequality (36) holds, from lemma 1, inequality (38) is equivalent to inequality (31). 
Next, it is proved that matrix inequality (32) holds, it can be obtained from equation (25) and 

lemma 1 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )1/2 1/2

2

| | | 0 | 0 0
0 0 0 0 0

0
0 0 0

0

T T T T T T T Tk x k k A Q x k k R u k k u k k M k N k B
X k

I
I

ρ σγ   −
   ∗ − ∗   + <
   ∗ ∗ − ∗ ∗
   

∗ ∗ ∗ − ∗ ∗ ∗      

          (39) 

inequality (39) can be rewritten as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1/2 1/2

2

0| | |
0 0

| 0 0 0
00
0

T T T Tk x k k A Q x k k R u k k
BX k

N k M k u k k
I

I

σ ρ

γ −  
   ∗ −     +     ∗ ∗ −
   

∗ ∗ ∗ −    

 

( ) ( )

( )

|
0

0 0 0 0
0
0

T T

T T

u k k M k

N k B

ρ

σ

 
 
   + <  
 
  

                                                                                   (40) 

inequality (41) can be obtained by applying lemma 2 to the inequality (40) 

( ) ( ) ( )

( ) ( )

( )

0 |
0

| 0 0 0 0 0 0
0 0
0 0

T T

T T

u k k M k
B

N k M k u k k N k B

ρ

σ ρ σ

  
  
      +     
  
    
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( ) ( )

( ) ( ) ( ) ( )1

0 |
0

0 0 0 | 0 0 0
0 0
0 0

T T

T T

u k k M k
B

B N k N k M k u k k

ρ

σ σ ρδ δ −

  
  
      ≤ +      
  
    

      (41) 

if the inequality (42) holds: 

( ) ( ) ( ) ( )
( )

1/2 1/2

2

| | |
0 0

0

T T T Tk x k k A Q x k k R u k k
X k

I
I

γ −
 ∗ − 
 ∗ ∗ −
 

∗ ∗ ∗ −  

  

( ) ( )

( ) ( ) ( ) ( )1

0 |
0

0 0 0 | 0 0 0 0
0 0
0 0

T T

T T

u k k M k
B

B N k N k M k u k k

ρ

σ σ ρδ δ −

  
  
      + + <     
  
    

 (42) 

then inequality (40) holds, by applying lemma 1 to the above inequality, inequality (42) is 
equivalent to inequality (32). Proof complete. 

4. Simulation example 

Consider the following open-loop unstable linear discrete-time controlled objects: 

0.2 0.5
0.3 0.5

− 
=  
 

A , 
0.5 0.1
1.6 0.3
 

=  
 

B , 
0.15 0.32
0.14 0.24

D  
=  
 

 

Select the initial state of the system is ( ) [ ]0 5 3= −x , weighting matrix 0.01Q = and 0.01=R , 
suppose at any time k , only one communication channel exists between the controller and the 
actuator, and the corresponding communication scheduling matrix is 

{ }1 2

1 0 0 0
, ,

0 0 0 1
     =     
     

M M  

due to packet loss in networked control system, it is assumed that the probability of successful 
packet transmission between controller and actuator is 0.85, and the Markov state transition 
probability is 

( )
0.7 0.3
0.5 0.5

P i  
=  
 

 

according to Theorem 3, we can find that the controller gain of the system is 

1

0.0198 0.0002
0.0258 1.6939

K  
=  
 

, 2

1.5225 0.0464
0.0125 0.0338

K
− 

=  − 
 

The goal of this paper is to design a networked robust predictive controller, so that the networked 
control system (7) can still ensure stability and good control performance in the presence of 
medium access constraints and packet loss. According to the optimization algorithm in theorem 2, 
the upper bound of the performance index ( )γ k  of the system can be obtained, The performance 
index trajectory is shown in figure 2. It can be seen from figure 2 that the robust predictive 
controller designed in this paper can quickly converge to zero. figure 2 is the mode switching curve 
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of Markov communication sequence between controller and actuator, and "1" and "2" in the 
ordinate represent the random matrix of communication sequence 1M  and 2M . figure.4 shows the 
packet loss state of the system, which "0" and "1" in the ordinate represent the packet loss state and 
no packet loss respectively. figure. 5 is the input signal of the controller. It can be seen from the 
figure that the system can quickly reach the asymptotically stable state in the 10th sampling period. 
Figure 6 is the state trajectory diagram of the system. It can be seen from the diagram that under 
given initial conditions, the controller designed in this paper can quickly converge the state of the 
closed-loop system (7) to an asymptotically stable state at the 10th sampling period. From the 
simulation results, we can see that the response fluctuation of the system is small, which shows that 
the networked robust predictive controller designed in this paper can make the closed-loop system 
quickly reach asymptotic stability and has good dynamic performance. 

                       
Fig.2 Track of performance ( )kγ   indicators   Fig.3 Switch mode of medium access sequence 

             
Fig.4 Actuator packet loss                               Fig. 5 Controller output signal 

 
Fig. 6 State trajectory 
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5. Conclusions 

Based on the rolling time domain optimization strategy, this paper studies the networked robust 
predictive control with medium access constraints and packet loss. Considering the influence of 
network factors such as medium access constraints and packet loss, the network problem is 
transformed into the robustness problem of networked control system by using Markov jump rule 
and Bernoulli independent identically distributed process. According to the established Markov 
jump system model and stability analysis, a robust predictive controller for networked control 
system is designed by using linear matrix inequality method, so that the system can reach 
asymptotic stability. Finally, a numerical example is given to verify the effectiveness of the 
proposed control method. 
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