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Abstract: Accurate prediction of the chemical information of compounds played a vital role 
in the discovery of drug-like properties. The Polarized surface area (PSA) and oil-water 
partition coefficient (AlogP) of drug-like compounds properties were predicted based on 
DeepChem. By comparing the four models (Random Forest, Deep Neural Network, 
Convolutional Neural Network, Graphic Convolution), it is shown that CNN has 94% 
accuracy in PSA, DNN has 81% accuracy in AlogP. DeepChem can easily build a platform 
for molecular machine learning to predict specific characteristic attributes by selecting data 
sets, which may provide the possibility for drug prediction. 

1. Introduction

The discovery of drug-like compounds usually requires a large number of biochemical
experiments, which measures the physicochemical properties and bioavailability of chemical 
compounds. It usually costs a lot to conduct these experiments, and therefore, accurate prediction of 
the key properties of drug-like properties has a guiding role in the improvement of existing drugs 
and the discovery of new drugs. 

Machine learning is a new computational technique that has had a major impact in many fields 
and promoted many key progresses. Technics like speech-recognition all rely on multi-layer neural 
network learning to develop well. They also have a good effect on the prediction of 
physicochemical properties of drug-like compounds. 

DeepChem is an open-source project aiming at promoting the democratization of deep learning 
in drug discovery, which contains data on the properties of over 70,000 compounds, molecular 
characterization models and common machine learning models [1]. For example, RF, DNN, CNN, 
etc. are all used to facilitate the discovery and development of drugs. 

Machine learning frameworks seem well suited to predict the compound properties, since they 
allow multitask learning and automatically construct complex models [2]. This is especially 
important for the prediction of drug-like properties, because for most compounds, in terms of the 
few measurements available, it may not be possible to construct a valid representation in the 
prediction of traditional methods. In contrast, machine learning shows good performance. 
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The core challenge of drug molecular machine learning is to efficiently encode molecules into 
fixed-length vectors. Recently, studies have shown that it may be feasible to use SMILES strings for 
further learning tasks [3]. Modeling was performed using two wide range of molecular 
characterization methods and one of them is Extended-Connectivity Fingerprinting (ECFP) [4]. 

The present work firstly realized the use of random forest (RF) [5], the multi-task deep neural 
network (DNN) and the convolutional neural network (CNN) [6] and used the regression model; it 
also analyzed the key drug-like properties based on the graph convolution model (GC) [7], thus 
provided supports for drug prediction and compound. 

This article carried out the modeling and quantitative prediction towards the two most common 
molecular properties in the literature on drug-like research: oil-water distribution coefficient 
(ALogP) and polarization surface area (PSA), and then provide a basis for drug prediction and 
synthesis. All calculations were done in the open-source machine learning package DeepChem [1]. 

2. Methods

The author divided the compounds into three sets to validate the predictive model, adopted
attribute calculation to facilitate the experiments and finally adopted two forecast models to predict 
the drug-like properties. Besides, molecular featurization and evaluation standard also contributes to 
the discussion of the results. 

2.1 Data Set 

The current data set includes 1522 synthetic human BACE-1, which covers experimental data 
from at least 30 different laboratories, including research institutes, biopharmaceutical companies, 
etc. This data set can be loaded by the DeepChem built-in function [1]. 

2.2 Data Set Splitting 

To validate the predictive model, the compounds were divided into a training set (80%), a 
validation set (10%), and a test set (10%). The training sets were used to train models, while 
validation sets were used to adjust hyperparameters of each model, and test sets were used to 
evaluate the model. Generally, data sets of machine learning use the method of random splitting 
data sets, but for molecular data, based on the label index as the benchmark model, it is convenient 
to compare and analyze the prediction performance of different machine models. In order to obtain 
more complete results, the data set is divided into 8 subsets, and the number of compounds is 
separated from 222 to 1522. And four kinds of neural network methods were mainly discussed to 
build the model on the training set, and then verify and test. 

2.3 Attribute Calculation Methods 

Two types of attribute calculation are used in the experiments, namely, AlogP (oil-water partition 
coefficient) and PSA (polarized surface area). 

2.3.1 AlogP (Oil-Water Partition Coefficient) 

The partition coefficient of oil-water (Log P) is the logarithm of the partition coefficient of the 
compound in the n-octanol/water two-phase system (the ratio of the concentration of the compound 
in n-octanol to water), characterizing the distribution of the substance in the two phases of oil and 
water. Log P measured by the ACD software is recorded as AlogP. Ghose et al [8] studied the 
physicochemical properties of 6304 drugs in the CMC database, indicating that 80% of the drugs 
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have AlogP between -0.4 and 5.6, an average of 2.52. Log P is the basic physical properties of drugs. 
Therefore, the study on the distribution of Log P is an important part of drug-like prediction, and it 
has a good application prospect in this field. 

2.3.2 PSA (Polarized Surface Area) 

Polarized surface area (PSA) is the sum of van der Waals surface areas of all polarized atoms [9]. 
It is also the main description indicator for evaluating the transportability of drugs in cells and can 
be used to predict the functions of human bodies. Veber et al [10] found that the flexible structure of 
the molecule has an important effect on molecular absorption through oral experiments in rats. 
When (1) PSA does not exceed 140 Å2 (or the sum of the hydrogen bond donor and acceptor does 
not exceed 12) (2) the rotatable single bond does not exceed 10, the compound has a good 
bioavailability of 20-40%. The former PSA is related to the desolvation energy of the polarizing 
group permeating the cell membrane. In the experiments of Martin et al. [11], the PSA with 
negatively charged compounds have a decisive influence on bioavailability: when PSA≤75 Å2, the 
probability of utilization >10% is 85%, when PSA≥150 Å2, this probability dropped to only 11%, 
thus indicating that PSA is of great significance to drug-like prediction. 

2.4 Forecast Model 

Three forecast model, namely, Random Forest, Neural Network Model and Graphic Convolution 
are combined to better predict the key drug-like properties. 

2.4.1 Random Forest 

Random Forest (RF) [5], as developed in 2001 and first introduced by Breiman, is the principle 
of random forests into decision tree algorithms. In RF, multiple trees are generated with features 
randomly selected for each input quantity, and the predictions of the results are jointly determined 
by all trees and combined based on the majority vote rules. In this model, the number of trees was 
set to the default value of 100. 

 
Fig.1 Structural Framework of Random Forest. 

2.4.2 Neural Network Model 

Neural Network (NN) is an important algorithm in machine learning and the core algorithm of 
deep learning. Two widely used neural network algorithms, Deep Neural Network (DNN) and 
Convolution Neural Network (CNN), are mainly discussed here. As is known to all, the multi-layer 
neural network consists of three parts: the input layer, the hidden layer, and the output layer, thus, 
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the neural network architecture seems to be very suitable for predicting the target. 

 
Fig.2 Structural Framework of Deep Learning Network (Left) and Convolutional Neural Network 

(Right). 

Deep Neural Network (DNN) is composed of several hidden layers. For each assumed input 
(including output), it is independent of each other, and the layers are fully connected, that is, any 
neuron of the i-th layer must be connected to any of the neurons in the next layer i+1-th. In this 
model, the number of loops was set to 50. 

Convolutional Neural Network (CNN) [6] uses the convolution kernel as an intermediary to 
avoid the direct connection between the upper and lower neurons. Generally, by the entire image as 
input, all the image information is shared in the same convolution kernel, and the image is subjected 
to convolution operation. After throwing and retaining the original positional relationship, the local 
structure can be mined, which is more suitable for images multitasking recognition processing. 

2.4.3 Graphic Convolution 

Graphic Convolution (GC) [7] is a new graph-based prediction model that extends the 
decomposition principles of circular fingerprints, which allows adaptive learning by using 
differentiable network layers. The useful information needed in the current task is extracted from it. 
Moreover, the graph convolution model treats molecules as undirected graphs, and the learning 
process can be applied to every atom and bonding atom of the molecular structure. This model uses 
RDKit to convert the SMILES string into a molecular graph based on Deepchem [1]. 

 
Fig.3 Structural Framework of Graphic Convolution. 
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2.5 Molecular Featurization 

Models include (RF, DNN, and CNN) use ECFP features, and graph-based GC models use their 
circular convolution features. 

Extended-Connectivity Fingerprinting (ECFP) [4] is widely-used molecular feature in chemical 
informatics. The molecules are decomposed into sub-modules from heavy atoms. Each sub-module 
is assigned a unique identifier and then extended with the identifier by binding. 

Graph convolution (GC) [7] supports most graph-based models. It computes an initial feature 
vector and a neighbor list for each atom and further generates graph structures with the local 
chemical environment around the atoms and connectivity of the whole molecule. 

2.6 Evaluation Standard 

For this regression dataset MAE and R2 as metrics for the model used to evaluate the effect of 
the model. 

MAE refers to Mean Absolute Error, which represents the average of the sum of the absolute 
value of the predicted value and the true value, reflecting the accuracy of the model prediction. 

MAE = 1
𝑚𝑚
∑ |(𝑦𝑦𝑖𝑖 − ŷ𝑖𝑖)|𝑚𝑚
𝑖𝑖=1       (1) 

R2, or R Squared, characterizes the statistic that reflects the degree of linear correlation between 
two variables. 
𝑅𝑅2 = 𝐸𝐸2[𝑥𝑥𝑥𝑥]

𝜎𝜎𝑥𝑥2𝜎𝜎𝑦𝑦2
        (2) 

3. Results and Discussion 

The first step in the data analysis work is visualization. Therefore, the predictive properties 
AlogP and PSA are firstly visualized. The following figure shows the distribution of the two 
properties in the dataset. It can be seen that AlogP is mainly distributed between -2-6, while PSA is 
mainly distributed between 0-200 Å2. 

 
Fig.4 Distribution of Alogp and Psa Properties in the Complete Data Set 1522, (‘Number of 

compounds’, y-Axis) and (‘Alogp or PSA’ Measurements, X-Axis). 

3.1 Model Comparison 

The author compared the predictive performance of various machine learning models with 
various methods, especially the graph convolution method based on molecular graphs. Using 
molecular convolution will principally achieve better performance results. 

Table .1. Performance comparison of target property prediction methods. The table gives the 
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mean standard deviation of R2 and MAE values of the comparison algorithm on the test set. Overall, 
CNN (fourth column) performed best for PSA, while DNN (third column) performs better in the 
prediction of the AlogP. 
PSA BEST RF DNN CNN GC 
R2 0.835±0.007 0.873±0.007 0.940±0.004 0.859±0.014 
MAE 232.120±20.001 8.440±0.459 7.485±1.162 8.856±1.137 
AlogP BEST     
R2 0.722±0.025 0.813±0.003 0.799±0.004 0.765±0.037 
MAE 0.751±0.079 0.507±0.021 0.518±0.062 0.525±0.052 

The GC does not perform optimally and this could be related to the selection of the size and 
nature of the dataset. After expanding the size of the data set, it may have better performance. 

 
Fig. 5. The best performance of AlogP and PSA in the training set, validation set, and test set of 

MAE in different models, (‘data set type’, y-axis and ‘MAE best performance’, x-axis). Colors 
represent different predictive models, namely RF, DNN, CNN, GC. Each data point is the best 
performance of 5 independent operations, and the standard deviation is shown as an error bar. The 
MAE value of the RF in the PSA is one-tenth of its true value. It can be seen that for the PSA, the 
MAE of the RF is too large, and this model may not be suitable for PSA prediction. 

 
Fig. 6. The best performance of AlogP and PSA in the training set, validation set, and test set of 

R2 in different models (‘data set type’, y-axis and ‘R2 best performance’, x axis). Colors represent 
different predictive models, namely RF, DNN, CNN, GC. Each data point is the best performance of 
5 independent operations, and the standard deviation is shown as an error bar. It can be seen that the 
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four models have a better prediction fit for PSA. 

3.2 Data Set Size and Predictive Performance 

By dividing the data set into subsets of different sizes, it can also get the relationship between the 
data set size and the predicted performance. By examining the correlation between MAE, R2 values 
and the training set size (see Fig. 7). It can be observed that larger data sets in principle lead to 
better predictions. However, when the sample is small, the models also show good prediction 
correlation, and when the data set size reaches a certain value, the prediction result tends to be 
stable. 

 
Fig.7. Trend graph of the predictive evaluation indicator MAE, (‘MAE’, y-axis and ‘training set 

size’, x-axis). Colors represent different predictive models, namely RF, DNN, CNN, GC. Each data 
point is the average of 5 independent operations, and the standard deviation is shown as an error bar. 
The MAE value of the RF in the PSA is one-tenth of its true value. 

 
Fig.8 Trend Graph for Predictive Evaluation Index R2, (‘R2’, y-Axis and ‘Training Set size’, X-Axis). 

Colors represent different predictive models, namely RF, DNN, CNN, GC. Each data point is the 
average of 5 independent operations, and the standard deviation is shown as an error bar. When the 
number of compounds in the data set exceeds a certain scale, it will lead to over-fitting, which will 
cause the prediction performance to decline. 

4. Conclusion 
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Based on the DeepChem open-source software package, the key physicochemical properties PSA 
and AlogP in the drug-like properties were predicted by RF,DNN,CNN and GC, which reduces the 
common deviations in traditional methods. By predicting the various models of machine learning, it 
is observed that when the sample is small, GC based on graph convolution does not show obvious 
advantages, and the CNN is generally outperforming the other methods. Because it usually inputs 
the entire image and shares the parameters between neurons, the calculation of the convolution 
layer and pooling layer makes it better than other prediction methods in general. As the size of the 
data set increases, this performance will improve in principle. In general, when the prediction result 
of the machine learning model is not satisfactory, the changes of its hidden layer number, activation 
functions and molecular characteristics can be considered. The existing methods in DeepChem only 
allow separate experiments for different models and do not implement parallel processing of 
multiple data sets, which can be improved in future studies. 
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